7,384 research outputs found

    Orbital ordering promotes weakly-interacting S=1/2 dimers in the triangular lattice compound Sr3Cr2O8

    Full text link
    The weakly interacting S=1/2 dimers system Sr3Cr2O8 has been investigated by powder neutron diffraction and inelastic neutron scattering. Our data reveal a structural phase transition below room temperature corresponding to an antiferro-orbital ordering with nearly 90 degrees arrangement of the occupied 3z^2-r^2 d-orbital. This configuration leads to a drastic reduction of the inter-dimer exchange energies with respect to the high temperature orbital-disorder state, as shown by a spin-dimer analysis of the super-superexchange interactions performed using the Extended Huckel Tight Binding method. Inelastic neutron scattering reveals the presence of a quasi non-dispersive magnetic excitation at 5.4 meV, in agreement with the picture of weakly-interacting dimers

    A probabilistic approach to composite micromechanics

    Get PDF
    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material properties at the micro level. Regression results are presented to show the relative correlation between predicted and response variables in the study

    From soft harmonic phonons to fast relaxational dynamics in CH3_{3}NH3_{3}PbBr3_{3}

    Full text link
    The lead-halide perovskites, including CH3_{3}NH3_{3}PbBr3_{3}, are components in cost effective, highly efficient photovoltaics, where the interactions of the molecular cations with the inorganic framework are suggested to influence the electronic and ferroelectric properties. CH3_{3}NH3_{3}PbBr3_{3} undergoes a series of structural transitions associated with orientational order of the CH3_{3}NH3_{3} (MA) molecular cation and tilting of the PbBr3_{3} host framework. We apply high-resolution neutron scattering to study the soft harmonic phonons associated with these transitions, and find a strong coupling between the PbBr3_{3} framework and the quasistatic CH3_{3}NH3_{3} dynamics at low energy transfers. At higher energy transfers, we observe a PbBr6_{6} octahedra soft mode driving a transition at 150 K from bound molecular excitations at low temperatures to relatively fast relaxational excitations that extend up to ∼\sim 50-100 meV. We suggest that these temporally overdamped dynamics enables possible indirect band gap processes in these materials that are related to the enhanced photovoltaic properties.Comment: (main text - 5 pages, 4 figures; supplementary information - 3 pages, 3 figures

    N2-associated surface warming on early Mars

    Full text link
    Early Mars may have had a warmer and denser atmosphere allowing for the presence of liquid water on the surface. However, climate model studies have not been able to reproduce these conditions even with a CO2 atmosphere of several bars. Recent 3D simulations of the early Mars climate show that mean surface temperatures only slightly below 273K could be reached locally. We want to investigate the effect of increased partial pressures of N2 on early Mars' surface temperature by including pressure broadening of absorption lines and collision-induced N2-N2 absorption. A 1D radiative-convective cloud-free atmospheric model was used to calculate temperature profiles and surface conditions. We performed a parameter study varying the N2 partial pressures from 0 to 0.5bar at CO2 partial pressures between 0.02bar and 3bar. These values are consistent with existing estimates of the initial, pre-Noachian reservoir. Solar insolation was set to be consistent with the late Noachian. Our 1D global mean simulations clearly show that enhanced N2 content in the Martian atmosphere could have increased surface temperatures. An additional greenhouse warming of up to 13K was found at a high N2 partial pressure of 0.5bar. Still, even at this N2 partial pressure, global mean surface temperatures remained below 273K, i.e. the freezing point of water. However, given the magnitude of the N2-induced surface warming and the results of recent 3D studies which show that local mean surface temperatures are not much lower than 273K, our results imply that the presence of atmospheric N2 could have led to almost continously habitable mean surface conditions in some regions. In addition, atmospheric water column amounts increased by up to a factor of 6 in response to the surface warming, indicating that precipitation might also increase upon increasing N2 partial pressure.Comment: 6 pages, 3 figures, accepted for publication in Planetary and Space Scienc

    Understanding K/Ï€K/\pi ratio distribution in the mixed events

    Get PDF
    The event mixing method is analyzed for the study of the event-by-event K/Ï€K/\pi ratio distribution. It is shown that there exists some correlation between the kaon and pion multiplicities in the mixed events. The K/Ï€K/\pi ratio distributions in the mixed events for different sets of real events are shown. The dependence of the distributions on the mean K/Ï€K/\pi ratio, mean and variance of multiplicity distribution in the real events is investigated systematically. The effect of imperfect particle identification on the K/Ï€K/\pi ratio distribution in the mixed event is also considered.Comment: 11 pages in revtex, 8 eps figures include

    Ozone exposure assessment in a southern California community.

    Get PDF
    An ozone exposure assessment study was conducted in a Southern California community. The Harvard ozone passive sampler was used to monitor cohorts of 22 and 18 subjects for 8 weeks during the spring and fall of 1994, respectively. Ozone exposure variables included 12-hr personal O3 measurements, stationary outdoor O3 measurements from a continuous UV photometer and from 12-hr Harvard active monitors, and time-activity information. Results showed that personal O3 exposure levels averaged one-fourth of outdoor stationary O3 levels, attributable to high percentages of time spent indoors. Personal O3 levels were not predicted well by outdoor measurements. A random-effect general linear model analysis indicated that variance in personal exposure measurements was largely accounted for by random error (59-82%), followed by inter-subject (9-18%) and between-day (9-23%) random effects. The microenvironmental model performs differently by season, with the regression model for spring cohorts exhibiting two times the R2 of the fall cohorts (R2 = 0.21 vs. 0.09). When distance from the stationary monitoring site, elevation, and traffic are taken into account in the microenvironmental models, the adjusted R2 increased almost twofold for the fall personal exposure data. The low predictive power is due primarily to the apparent spatial variation of outdoor O3 and errors in O3 measurements and in time-activity records (particularly in recording the use of air conditioning). This study highlights the magnitude of O3 exposure misclassification in epidemiological settings and proposes an approach to reduce exposure uncertainties in assessing air pollution health effects

    Interplay between static and dynamic polar correlations in relaxor Pb(Mg_{1/3}Nb_{2/3})O_{3}

    Full text link
    We have characterized the dynamics of the polar nanoregions in Pb(Mg1/3_{1/3}Nb2/3_{2/3})O3_{3} (PMN) through high-resolution neutron backscattering and spin-echo measurements of the diffuse scattering cross section. We find that the diffuse scattering intensity consists of \emph{both} static and dynamic components. The static component first appears at the Curie temperature Θ∼400\Theta \sim 400 K, while the dynamic component freezes completely at the temperature Tf∼200_{f} \sim 200 K; together, these components account for all of the observed spectral weight contributing to the diffuse scattering cross section. The integrated intensity of the dynamic component peaks near the temperature at which the frequency-dependent dielectric constant reaches a maximum (Tmax_{max}) when measured at 1 GHz, i. e. on a timescale of ∼1\sim 1 ns. Our neutron scattering results can thus be directly related to dielectric and infra-red measurements of the polar nanoregions. Finally, the global temperature dependence of the diffuse scattering can be understood in terms of just two temperature scales, which is consistent with random field models.Comment: (8 pages, 5 figures, submitted to Phys. Rev. B

    Group behavior among model bacteria influences particulate carbon remineralization depths

    Get PDF
    Organic particles sinking from the sunlit surface are oases of food for heterotrophic bacteria living in the deep ocean. Particle-attached bacteria need to solubilize particles, so they produce exoenzymes that cleave bonds to make molecules small enough to be transported through bacterial cell walls. Releasing exoenzymes, which have an energetic cost, to the external environment is risky because there is no guarantee that products of exoenzyme activity, called hydrolysate, will diffuse to the particle-attached bacterium that produced the exoenzymes. Strategies used by particle-attached bacteria to counteract diffusive losses of exoenzymes and hydrolysate are investigated in a water column model. We find that production of exoenzymes by particle-attached bacteria is only energetically worthwhile at high bacterial abundances. Quorum sensing provides the means to determine local abundances, and thus the model results support lab and field studies which found that particle-attached bacteria have the ability to use quorum sensing. Additional model results are that particle-attached bacterial production is sensitive to diffusion of hydrolysate from the particle and is enhanced by as much as 15 times when diffusion of exoenzymes and hydrolysate from particles is reduced by barriers of biofilms and particle-attached bacteria. Bacterial colonization rates and activities on particles in both the euphotic and mesopelagic zones impact remineralization length scales. Shoaling or deepening of the remineralization depth has been shown to exert significant influence on the residence time and concentration of carbon in the atmosphere and ocean. By linking variability in remineralization depths to mechanisms governing bacterial colonization of particles and group coordination of exoenzyme production using a model, we quantitatively connect microscale bacteria-particle interactions to the carbon cycle and provide new insights for future observations

    Helical spin-waves, magnetic order, and fluctuations in the langasite compound Ba3NbFe3Si2O14

    Get PDF
    We have investigated the spin fluctuations in the langasite compound Ba3NbFe3Si2O14 in both the ordered state and as a function of temperature. The low temperature magnetic structure is defined by a spiral phase characterized by magnetic Bragg peaks at q=(0,0,tau ~ 1/7) onset at TN=27 K as previously reported by Marty et al. The nature of the fluctuations and temperature dependence of the order parameter is consistent with a classical second order phase transition for a two dimensional triangular antiferromagnet. We will show that the physical properties and energy scales including the ordering wavevector, Curie-Weiss temperature, and the spin-waves can be explained through the use of only symmetric exchange constants without the need for the Dzyaloshinskii-Moriya interaction. This is accomplished through a set of ``helical" exchange pathways along the c direction imposed by the chiral crystal structure and naturally explains the magnetic diffuse scattering which displays a strong vector chirality up to high temperatures well above the ordering temperature. This illustrates a strong coupling between magnetic and crystalline chirality in this compound.Comment: 16 pages, 16 figures, submitted to Physical Review
    • …
    corecore