379 research outputs found

    A study of the relationship between macroscopic measures and physical processes occurring during crack closure

    Get PDF
    Issued as Fiscal year report, Annual reports [nos. 1-3], and Final report, Project E-18-665 (subproject: E-18-666

    Bone resorption and formation in the pedicles of European roe deer (Capreolus capreolus) in relation to the antler cycle—A morphological and microanalytical study

    Get PDF
    We analyzed pedicle bone from roe bucks that had died around antler casting or shortly before or during the rutting period. Pedicles obtained around antler casting were highly porous and showed signs of intense osteoclastic activity that had caused the formation of an abscission line. Following the detachment of the antler plus a portion of pedicle bone, osteoclastic activity in the pedicles continued for some time, and new bone was deposited onto the separation plane of the pedicle stump, leading to partial pedicle restoration. Pedicles obtained around the rutting period were compact structures. The newly formed, often very large secondary osteons, which had filled the resorption cavities, exhibited a lower mineral density than the persisting older bone. The middle zones of the lamellar infilling frequently showed hypomineralized lamellae and enlarged osteocyte lacunae. This indicates a deficiency in mineral elements during the formation of these zones that occurred along with peak antler mineralization. We suggest that growing antlers and compacting pedicles compete for mineral elements, with the rapidly growing antlers being the more effective sinks. The competition between the two simultaneously mineralizing structures is probably more severe in Capreolus capreolus than in other cervids. This is because roe bucks regrow their antlers during late autumn and winter, a period of limited food and associated mineral supply. The pedicle is a heavily remodeled bone structure with distinct seasonal variation in porosity. Pedicle remodeling differs in several aspects from the normal bone remodeling process in the mammalian skeleton.18 página

    Distribution, structure, and mineralization of calcified cartilage remnants in hard antlers

    Get PDF
    Antlers are paired deciduous bony cranial appendages of deer that undergo a regular cycle of growth, death and casting, and constitute the most rapidly growing bones in mammals. Antler growth occurs in an appositional mode and involves a modified form of endochondral ossification. In endochondral bones, calcified cartilage is typically a transient tissue that is eventually completely replaced by bone tissue. We studied the distribution and characteristics of calcified cartilage in hard antlers from three deer species (Capreolus capreolus, Cervus elaphus, Dama dama), i.e., in antlers from which the skin (velvet) had been shed. Remnants of calcified cartilage were regularly present as part of the trabecular framework in the late formed, distal antler portions in all three species, whereas this tissue was largely or completely missing in the more proximal antler portions. The presence of calcified cartilage remnants in the distal antler portions is attributed to the limited antler lifespan of only a few months, which is also the reason for the virtual lack of bone remodeling in antlers. The calcified cartilage matrix was more highly mineralized than the antler bone matrix. Mineralized deposits were observed in some chondrocyte lacunae and occasionally also in osteocyte lacunae, a phenomenon that has not previously been reported in antlers. Using synchrotron radiation-induced X-ray fluorescence (SR-XRF) mapping, we further demonstrated increased zinc concentrations in cement lines, along the inner borders of incompletely formed primary osteons, along the walls of partly or completely mineral-occluded chondrocyte and osteocyte lacunae, and in intralacunar mineralized deposits. The present study demonstrates that antlers are a promising model for studying the mineralization of cartilage and bone matrices and the formation of mineralized deposits in chondrocyte and osteocyte lacunae

    Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    Get PDF
    Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT) theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI) from truncated data in a theoretically exact fashion via the total variation (TV) minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP) reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen

    Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties

    Get PDF
    Authors' accepted manuscript. Bone Biology Laboratory http://www.iupui.edu/~bonelab/ Department of Anatomy and Cell Biology Indiana University School of Medicine Department of Biomedical Engineering IUPUIRaloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (-OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle x-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength.The authors would like to thank Dr. Paul K. Hansma (Department of Physics, University of California, Santa Barbara), for suggesting the soaking technique and Dr. John Okasinski, Advanced Photon Source, for helping collect the WAXS data. Raloxifene was kindly provided by Eli Lilly (Indianapolis, IN, USA) under a Material Transfer Agreement to D.B.B. Eli Lilly was not involved in the study design, analyses or interpretation of the results. We are grateful to Dr. Susan J. Gunst for sharing dog tissue. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported by NIH grants to D.B.B. and M.R.A

    Interim findings from first-dose mass COVID-19 vaccination roll-out and COVID-19 hospital admissions in Scotland: a national prospective cohort study

    Get PDF
    EAVE II is funded by the Medical Research Council (MR/R008345/1) with the support of BREATHE—The Health Data Research Hub for Respiratory Health (MC_PC_19004), which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. Additional support has been provided through Public Health Scotland and the Scottish Government's director-general of Health and Social Care. FDRH acknowledges part support from the National Institutes of Health Research (NIHR) School for Primary Care Research, the NIHR Collaboration for Leadership in Applied Health Research and Care Oxford, and the NIHR Oxford Biomedical Research Centre. SVK acknowledges funding from an NRS Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and Scottish Government Chief Scientist Office (SPHSU13).Background The BNT162b2 mRNA (Pfizer–BioNTech) and ChAdOx1 nCoV-19 (Oxford–AstraZeneca) COVID-19 vaccines have shown high efficacy against disease in phase 3 clinical trials and are now being used in national vaccination programmes in the UK and several other countries. Studying the real-world effects of these vaccines is an urgent requirement. The aim of our study was to investigate the association between the mass roll-out of the first doses of these COVID-19 vaccines and hospital admissions for COVID-19.  Methods We did a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19—EAVE II—database comprising linked vaccination, primary care, real-time reverse transcription-PCR testing, and hospital admission patient records for 5·4 million people in Scotland (about 99% of the population) registered at 940 general practices. Individuals who had previously tested positive were excluded from the analysis. A time-dependent Cox model and Poisson regression models with inverse propensity weights were fitted to estimate effectiveness against COVID-19 hospital admission (defined as 1–adjusted rate ratio) following the first dose of vaccine.  Findings Between Dec 8, 2020, and Feb 22, 2021, a total of 1 331 993 people were vaccinated over the study period. The mean age of those vaccinated was 65·0 years (SD 16·2). The first dose of the BNT162b2 mRNA vaccine was associated with a vaccine effect of 91% (95% CI 85–94) for reduced COVID-19 hospital admission at 28–34 days post-vaccination. Vaccine effect at the same time interval for the ChAdOx1 vaccine was 88% (95% CI 75–94). Results of combined vaccine effects against hospital admission due to COVID-19 were similar when restricting the analysis to those aged 80 years and older (83%, 95% CI 72–89 at 28–34 days post-vaccination).  Interpretation Mass roll-out of the first doses of the BNT162b2 mRNA and ChAdOx1 vaccines was associated with substantial reductions in the risk of hospital admission due to COVID-19 in Scotland. There remains the possibility that some of the observed effects might have been due to residual confounding.  Funding UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK.proofPeer reviewe

    COVID-19 hospital admissions and deaths after BNT162b2 and ChAdOx1 nCoV-19 vaccinations in 2·57 million people in Scotland (EAVE II):a prospective cohort study

    Get PDF
    EAVE II is funded by the Medical Research Council (MR/R008345/1) with the support of BREATHE—The Health Data Research Hub for Respiratory Health [MC_PC_19004], which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. UA, CM, AA-L, and AFF acknowledge funding from Chief Scientist Office Rapid Research in COVID-19 programme (COV/SAN/20/06) and Health Data Research UK (measuring and understanding multimorbidity using routine data in the UK—HDR-9006; CFC0110). SVK acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government's Chief Scientist Office (SPHSU17). SJS is funded by a Wellcome Trust Clinical Career Development Fellowship (209560/Z/17/Z).Background  The UK COVID-19 vaccination programme has prioritised vaccination of those at the highest risk of COVID-19 mortality and hospitalisation. The programme was rolled out in Scotland during winter 2020–21, when SARS-CoV-2 infection rates were at their highest since the pandemic started, despite social distancing measures being in place. We aimed to estimate the frequency of COVID-19 hospitalisation or death in people who received at least one vaccine dose and characterise these individuals. Methods  We conducted a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) national surveillance platform, which contained linked vaccination, primary care, RT-PCR testing, hospitalisation, and mortality records for 5·4 million people (around 99% of the population) in Scotland. Individuals were followed up from receiving their first dose of the BNT162b2 (Pfizer–BioNTech) or ChAdOx1 nCoV-19 (Oxford–AstraZeneca) COVID-19 vaccines until admission to hospital for COVID-19, death, or the end of the study period on April 18, 2021. We used a time-dependent Poisson regression model to estimate rate ratios (RRs) for demographic and clinical factors associated with COVID-19 hospitalisation or death 14 days or more after the first vaccine dose, stratified by vaccine type. Findings Between Dec 8, 2020, and April 18, 2021, 2 572 008 individuals received their first dose of vaccine—841 090 (32·7%) received BNT162b2 and 1 730 918 (67·3%) received ChAdOx1. 1196 (<0·1%) individuals were admitted to hospital or died due to COVID-19 illness (883 hospitalised, of whom 228 died, and 313 who died due to COVID-19 without hospitalisation) 14 days or more after their first vaccine dose. These severe COVID-19 outcomes were associated with older age (≥80 years vs 18–64 years adjusted RR 4·75, 95% CI 3·85–5·87), comorbidities (five or more risk groups vs less than five risk groups 4·24, 3·34–5·39), hospitalisation in the previous 4 weeks (3·00, 2·47–3·65), high-risk occupations (ten or more previous COVID-19 tests vs less than ten previous COVID-19 tests 2·14, 1·62–2·81), care home residence (1·63, 1·32–2·02), socioeconomic deprivation (most deprived quintile vs least deprived quintile 1·57, 1·30–1·90), being male (1·27, 1·13–1·43), and being an ex-smoker (ex-smoker vs non-smoker 1·18, 1·01–1·38). A history of COVID-19 before vaccination was protective (0·40, 0·29–0·54). Interpretation COVID-19 hospitalisations and deaths were uncommon 14 days or more after the first vaccine dose in this national analysis in the context of a high background incidence of SARS-CoV-2 infection and with extensive social distancing measures in place. Sociodemographic and clinical features known to increase the risk of severe disease in unvaccinated populations were also associated with severe outcomes in people receiving their first dose of vaccine and could help inform case management and future vaccine policy formulation.Publisher PDFPeer reviewe

    First dose ChAdOx1 and BNT162b2 COVID-19 vaccinations and cerebral venous sinus thrombosis : a pooled self-controlled case series study of 11.6 million individuals in England, Scotland, and Wales

    Get PDF
    Funding: This research is part of the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (grant ref MC_PC_20029, AS). EAVE II is funded by the Medical Research Council (https://mrc.ukri.org/) (UKRI MC_PC 19075, AS) with the support of BREATHE, The Health Data Research Hub for Respiratory Health (MC_PC_19004, AS), which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. This work was supported by the Con-COV team funded by the Medical Research Council (grant number: MR/V028367/1, RL). This work was supported by Health Data Research UK, which receives its funding from HDR UK Ltd (HDR-9006, RL) funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation (BHF) and the Wellcome Trust. This work was supported by the ADR Wales programme of work (https://www.adruk.org/). ADR Wales is part of the Economic and Social Research Council (part of UK Research and Innovation) funded ADR UK (grant ES/S007393/1, RL). SVK acknowledges funding from NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02, SVK), the MRC (MC_UU_00022/2, SVK), and the Scottish Government Chief Scientist Office (SPHSU17, SVK).Background : Several countries restricted the administration of ChAdOx1 to older age groups in 2021 over safety concerns following case reports and observed versus expected analyses suggesting a possible association with cerebral venous sinus thrombosis (CVST). Large datasets are required to precisely estimate the association between Coronavirus Disease 2019 (COVID-19) vaccination and CVST due to the extreme rarity of this event. We aimed to accomplish this by combining national data from England, Scotland, and Wales. Methods and findings : We created data platforms consisting of linked primary care, secondary care, mortality, and virological testing data in each of England, Scotland, and Wales, with a combined cohort of 11,637,157 people and 6,808,293 person years of follow-up. The cohort start date was December 8, 2020, and the end date was June 30, 2021. The outcome measure we examined was incident CVST events recorded in either primary or secondary care records. We carried out a self-controlled case series (SCCS) analysis of this outcome following first dose vaccination with ChAdOx1 and BNT162b2. The observation period consisted of an initial 90-day reference period, followed by a 2-week prerisk period directly prior to vaccination, and a 4-week risk period following vaccination. Counts of CVST cases from each country were tallied, then expanded into a full dataset with 1 row for each individual and observation time period. There was a combined total of 201 incident CVST events in the cohorts (29.5 per million person years). There were 81 CVST events in the observation period among those who a received first dose of ChAdOx1 (approximately 16.34 per million doses) and 40 for those who received a first dose of BNT162b2 (approximately 12.60 per million doses). We fitted conditional Poisson models to estimate incidence rate ratios (IRRs). Vaccination with ChAdOx1 was associated with an elevated risk of incident CVST events in the 28 days following vaccination, IRR = 1.93 (95% confidence interval (CI) 1.20 to 3.11). We did not find an association between BNT162b2 and CVST in the 28 days following vaccination, IRR = 0.78 (95% CI 0.34 to 1.77). Our study had some limitations. The SCCS study design implicitly controls for variables that are constant over the observation period, but also assumes that outcome events are independent of exposure. This assumption may not be satisfied in the case of CVST, firstly because it is a serious adverse event, and secondly because the vaccination programme in the United Kingdom prioritised the clinically extremely vulnerable and those with underlying health conditions, which may have caused a selection effect for individuals more prone to CVST. Although we pooled data from several large datasets, there was still a low number of events, which may have caused imprecision in our estimates. Conclusions : In this study, we observed a small elevated risk of CVST events following vaccination with ChAdOx1, but not BNT162b2. Our analysis pooled information from large datasets from England, Scotland, and Wales. This evidence may be useful in risk–benefit analyses of vaccine policies and in providing quantification of risks associated with vaccination to the general public.Publisher PDFPeer reviewe

    Investigating the uptake, effectiveness and safety of COVID-19 vaccines : protocol for an observational study using linked UK national data

    Get PDF
    Funding: This research is part of the Data and Connectivity National Core Study, led by Health Data Research UK in partnership with the Office for National Statistics and funded by UK Research and Innovation (HDRUK2020.146). EAVE II is funded by the Medical Research Council (MC_PC_19075) and supported by the Scottish Government. This work is supported by BREATHE - The Health Data Research Hub for Respiratory Health (MC_PC_19004). BREATHE is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. ConCOV is supported by the Medical Research Council (MR/V028367/1); Health Data Research UK (HDR-9006) which receives its funding from the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation (BHF) and the Wellcome Trust; and Administrative Data Research UK which is funded by the Economic and Social Research Council (grant ES/S007393/1).Introduction : The novel coronavirus SARS-CoV-2, which emerged in December 2019, has caused millions of deaths and severe illness worldwide. Numerous vaccines are currently under development of which a few have now been authorised for population-level administration by several countries. As of 20 September 2021, over 48 million people have received their first vaccine dose and over 44 million people have received their second vaccine dose across the UK. We aim to assess the uptake rates, effectiveness, and safety of all currently approved COVID-19 vaccines in the UK. Methods and analysis : We will use prospective cohort study designs to assess vaccine uptake, effectiveness and safety against clinical outcomes and deaths. Test-negative case–control study design will be used to assess vaccine effectiveness (VE) against laboratory confirmed SARS-CoV-2 infection. Self-controlled case series and retrospective cohort study designs will be carried out to assess vaccine safety against mild-to-moderate and severe adverse events, respectively. Individual-level pseudonymised data from primary care, secondary care, laboratory test and death records will be linked and analysed in secure research environments in each UK nation. Univariate and multivariate logistic regression models will be carried out to estimate vaccine uptake levels in relation to various population characteristics. VE estimates against laboratory confirmed SARS-CoV-2 infection will be generated using a generalised additive logistic model. Time-dependent Cox models will be used to estimate the VE against clinical outcomes and deaths. The safety of the vaccines will be assessed using logistic regression models with an offset for the length of the risk period. Where possible, data will be meta-analysed across the UK nations. Ethics and dissemination : We obtained approvals from the National Research Ethics Service Committee, Southeast Scotland 02 (12/SS/0201), the Secure Anonymised Information Linkage independent Information Governance Review Panel project number 0911. Concerning English data, University of Oxford is compliant with the General Data Protection Regulation and the National Health Service (NHS) Digital Data Security and Protection Policy. This is an approved study (Integrated Research Application ID 301740, Health Research Authority (HRA) Research Ethics Committee 21/HRA/2786). The Oxford-Royal College of General Practitioners Clinical Informatics Digital Hub meets NHS Digital’s Data Security and Protection Toolkit requirements. In Northern Ireland, the project was approved by the Honest Broker Governance Board, project number 0064. Findings will be made available to national policy-makers, presented at conferences and published in peer-reviewed journals.Publisher PDFPeer reviewe
    corecore