12 research outputs found

    A new hot DA white dwarf in a region of exceptionally low HI density

    No full text
    We report the discovery of the hot DA white dwarf RE 0457- 281 which has the lowest line-of-sight neutral hydrogen column density yet measured. The star was found independently by the ROSAT EUV, Montreal-Cambridge-Tololo and Edinburgh-Cape surveys. With an effective temperature of 60 700 K and very soft EUV spectrum, this white dwarf resembles the well-studied hot DA white dwarf G 191- B2B. A follow-up observation made using the Voyager 2 UV spectrometer reveals a strong continuum shortward of the 912-Å Lyman limit from which we deduce that the neutral hydrogen column density is 1.3 x 1O 17 atom cm-ÂČ

    A new hot DA white dwarf in a region of exceptionally low HI density

    No full text
    We report the discovery of the hot DA white dwarf RE 0457- 281 which has the lowest line-of-sight neutral hydrogen column density yet measured. The star was found independently by the ROSAT EUV, Montreal-Cambridge-Tololo and Edinburgh-Cape surveys. With an effective temperature of 60 700 K and very soft EUV spectrum, this white dwarf resembles the well-studied hot DA white dwarf G 191- B2B. A follow-up observation made using the Voyager 2 UV spectrometer reveals a strong continuum shortward of the 912-Å Lyman limit from which we deduce that the neutral hydrogen column density is 1.3 x 1O 17 atom cm-ÂČ

    CANARY: The NGS/LGS MOAO demonstrator for EAGLE

    No full text
    International audienceEAGLE is a multi-object 3D spectroscopy instrument currently under design for the 42-metre European Extremely Large Telescope (E-ELT). EAGLE will use open-loop Multi-Object Adaptive Optics (MOAO) to provide partial AO correction across a wide (5-10 arcmin) field of view. The novelty of this scheme is such that on-sky demonstration is required prior to final construction of an E-ELT instrument. The CANARY project will implement a single channel of an MOAO system on the 4.2m William Herschel Telescope. The CANARY project is undergoing a phased development plan that starts with demonstration of low-order open-loop AO correction using first NGS then Rayleigh LGS tomography, moving to a demonstration of high-order open-loop AO correction using LGS tomography. This final stage will also include 2 DMs in a woofer-tweeter configuration similar to that of EAGLE when installed at the E-ELT. We describe the requirements for the various phases of MOAO demonstration, the corresponding CANARY configurations and capabilities and the current designs of the various subsystems

    A Whole Earth Telescope campaign on the pulsating subdwarf B binary system PG 1336-018 (NY Vir)

    Get PDF
    We present results from a multisite (‘Whole Earth Telescope’) photometric campaign on PG 1336−018, the close eclipsing binary system containing a pulsating subdwarf B (sdB) star. The main part of the campaign (1999 April) resulted in ~172 h of observations, representing a coverage of about 47 per cent, and additional data were obtained outside the core campaign. Periodogram analysis shows that the light variations are dominated by three frequencies near 5757, 5585 and 5369 ÎŒHz (~174, 179 and 186s, respectively), although many frequencies are present, particularly in the range 5000–6000 ÎŒHz (~200–170 s). We identify, with some confidence, 28 frequencies down to a semi-amplitude of 0.0005 in fractional intensity (equivalent to about 0.5 mmag). It is clear that the pulsation frequencies of PG 1336−018 have changed substantially since the 1996 discovery observations were made, and that amplitude changes occur, at least in the dominant three frequencies, on relatively short time-scales (of the order of a day). On the assumption that the pulsating star is phase-locked in the binary system, we have searched for rotational splitting of frequencies near the orbital and half of the orbital period, but the results are confused by aliasing at those frequencies (due to the data gaps caused by the eclipses). A preliminary model qualitatively matches the distribution of frequencies in PG 1336−018, with some good individual correspondences, but cannot be considered adequate because geometric cancellation should hide some of the modes which are apparently detected. Analysis of the pulsations during eclipse recovers three of the strongest modes, but the limited eclipse data – which can, at best, be only about 9 per cent of the total – do not allow mode identification at this stage. Simulations indicate that an overall coverage of about 80 per cent would be required for this to be viable. An attempt was made to determine phase shifts in the pulsation frequencies as a way of directly measuring the size of the binary orbit, but the uncertainties in the method are comparable to the light travel time across the orbit (probably less than a second)

    A Whole Earth Telescope campaign on the pulsating subdwarf B binary system PG 1336-018 (NY Vir)

    Get PDF
    We present results from a multisite (‘Whole Earth Telescope’) photometric campaign on PG 1336−018, the close eclipsing binary system containing a pulsating subdwarf B (sdB) star. The main part of the campaign (1999 April) resulted in ~172 h of observations, representing a coverage of about 47 per cent, and additional data were obtained outside the core campaign. Periodogram analysis shows that the light variations are dominated by three frequencies near 5757, 5585 and 5369 ÎŒHz (~174, 179 and 186s, respectively), although many frequencies are present, particularly in the range 5000–6000 ÎŒHz (~200–170 s). We identify, with some confidence, 28 frequencies down to a semi-amplitude of 0.0005 in fractional intensity (equivalent to about 0.5 mmag). It is clear that the pulsation frequencies of PG 1336−018 have changed substantially since the 1996 discovery observations were made, and that amplitude changes occur, at least in the dominant three frequencies, on relatively short time-scales (of the order of a day). On the assumption that the pulsating star is phase-locked in the binary system, we have searched for rotational splitting of frequencies near the orbital and half of the orbital period, but the results are confused by aliasing at those frequencies (due to the data gaps caused by the eclipses). A preliminary model qualitatively matches the distribution of frequencies in PG 1336−018, with some good individual correspondences, but cannot be considered adequate because geometric cancellation should hide some of the modes which are apparently detected. Analysis of the pulsations during eclipse recovers three of the strongest modes, but the limited eclipse data – which can, at best, be only about 9 per cent of the total – do not allow mode identification at this stage. Simulations indicate that an overall coverage of about 80 per cent would be required for this to be viable. An attempt was made to determine phase shifts in the pulsation frequencies as a way of directly measuring the size of the binary orbit, but the uncertainties in the method are comparable to the light travel time across the orbit (probably less than a second)

    Whole Earth Telescope observations of BPM 37093 : a seismological test of crystallization theory in white dwarfs

    Get PDF
    BPM 37093 is the only hydrogen-atmosphere white dwarf currently known which has sufficient mass (~1.1 Mʘ) to theoretically crystallize while still inside the ZZ Ceti instability strip (Teff ~ 12 000 K). As a consequence, this star represents our first opportunity to test crystallization theory directly. If the core is substantially crystallized, then the inner boundary for each pulsation mode will be located at the top of the solid core rather than at the center of the star, affecting mainly the average period spacing. This is distinct from the “mode trapping” caused by the stratified surface layers, which modifies the pulsation periods more selectively. In this paper we report on Whole Earth Telescope observations of BPM 37093 obtained in 1998 and 1999. Based on a simple analysis of the average period spacing we conclude that a large fraction of the total stellar mass is likely to be crystallized

    Whole Earth Telescope observations of BPM 37093 : a seismological test of crystallization theory in white dwarfs

    Get PDF
    BPM 37093 is the only hydrogen-atmosphere white dwarf currently known which has sufficient mass (~1.1 Mʘ) to theoretically crystallize while still inside the ZZ Ceti instability strip (Teff ~ 12 000 K). As a consequence, this star represents our first opportunity to test crystallization theory directly. If the core is substantially crystallized, then the inner boundary for each pulsation mode will be located at the top of the solid core rather than at the center of the star, affecting mainly the average period spacing. This is distinct from the “mode trapping” caused by the stratified surface layers, which modifies the pulsation periods more selectively. In this paper we report on Whole Earth Telescope observations of BPM 37093 obtained in 1998 and 1999. Based on a simple analysis of the average period spacing we conclude that a large fraction of the total stellar mass is likely to be crystallized
    corecore