150 research outputs found

    Polymorphisms in the Receptor Tyrosine Kinase MERTK Gene Are Associated with Multiple Sclerosis Susceptibility

    Get PDF
    Multiple sclerosis (MS) is a debilitating, chronic demyelinating disease of the central nervous system affecting over 2 million people worldwide. The TAM family of receptor tyrosine kinases (TYRO3, AXL and MERTK) have been implicated as important players during demyelination in both animal models of MS and in the human disease. We therefore conducted an association study to identify single nucleotide polymorphisms (SNPs) within genes encoding the TAM receptors and their ligands associated with MS. Analysis of genotype data from a genome-wide association study which consisted of 1618 MS cases and 3413 healthy controls conducted by the Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene) revealed several SNPs within the MERTK gene (Chromosome 2q14.1, Accession Number NG_011607.1) that showed suggestive association with MS. We therefore interrogated 28 SNPs in MERTK in an independent replication cohort of 1140 MS cases and 1140 healthy controls. We found 12 SNPs that replicated, with 7 SNPs showing p-values of less than 10−5 when the discovery and replication cohorts were combined. All 12 replicated SNPs were in strong linkage disequilibrium with each other. In combination, these data suggest the MERTK gene is a novel risk gene for MS susceptibility

    Inhibition of Atrogin-1/MAFbx Mediated MyoD Proteolysis Prevents Skeletal Muscle Atrophy In Vivo

    Get PDF
    Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed

    Berberine Improves Glucose Metabolism in Diabetic Rats by Inhibition of Hepatic Gluconeogenesis

    Get PDF
    Berberine (BBR) is a compound originally identified in a Chinese herbal medicine Huanglian (Coptis chinensis French). It improves glucose metabolism in type 2 diabetic patients. The mechanisms involve in activation of adenosine monophosphate activated protein kinase (AMPK) and improvement of insulin sensitivity. However, it is not clear if BBR reduces blood glucose through other mechanism. In this study, we addressed this issue by examining liver response to BBR in diabetic rats, in which hyperglycemia was induced in Sprague-Dawley rats by high fat diet. We observed that BBR decreased fasting glucose significantly. Gluconeogenic genes, Phosphoenolpyruvate carboxykinase (PEPCK) and Glucose-6-phosphatase (G6Pase), were decreased in liver by BBR. Hepatic steatosis was also reduced by BBR and expression of fatty acid synthase (FAS) was inhibited in liver. Activities of transcription factors including Forkhead transcription factor O1 (FoxO1), sterol regulatory element-binding protein 1c (SREBP1) and carbohydrate responsive element-binding protein (ChREBP) were decreased. Insulin signaling pathway was not altered in the liver. In cultured hepatocytes, BBR inhibited oxygen consumption and reduced intracellular adenosine triphosphate (ATP) level. The data suggest that BBR improves fasting blood glucose by direct inhibition of gluconeogenesis in liver. This activity is not dependent on insulin action. The gluconeogenic inhibition is likely a result of mitochondria inhibition by BBR. The observation supports that BBR improves glucose metabolism through an insulin-independent pathway

    Rhabdastrellic Acid-A Induced Autophagy-Associated Cell Death through Blocking Akt Pathway in Human Cancer Cells

    Get PDF
    BACKGROUND: Autophagy is an evolutionarily conserved protein degradation pathway. A defect in autophagy may contribute to tumorigenesis. Autophagy inducers could have a potential function in tumor prevention and treatment. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that Rhabdastrellic acid-A, an isomalabaricane triterpenoid isolated from the sponge Rhabdastrella globostellata, inhibited proliferation of human cancer cell lines Hep3B and A549 and induced caspase-independent cell death in both the cell lines. Further investigation showed that Rhabdastrellic acid-A induced autophagy of cancer cells determined by YFP-LC3 punctation and increased LC3-II. The pretreatment with autophagy inhibitor 3-MA inhibited Rhabdastrellic acid-A-induced cell death. Knockdown of autophagy-related gene Atg5 inhibited Rhabdastrellic acid-A-induced cell death in A549 cells. Also, phospho-Akt and its downstream targets significantly decreased after treatment with Rhabdastrellic acid-A in both cancer cell lines. Transfection of constitutive active Akt plasmid abrogated autophagy and cell death induced by Rhabdastrellic acid-A. CONCLUSIONS/SIGNIFICANCE: These results suggest that Rhabdastrellic acid-A could induce autophagy-associated cell death through blocking Akt pathway in cancer cells. It also provides the evidence that Rhabdastrellic acid-A deserves further investigation as a potential anticancer or cancer preventive agent

    The differential hormonal milieu of morning versus evening, may have an impact on muscle hypertrophic potential

    Get PDF
    Substantial gains in muscle strength and hypertrophy are clearly associated with the routine performance of resistance training. What is less evident is the optimal timing of the resistance training stimulus to elicit these significant functional and structural skeletal muscle changes. Therefore, this investigation determined the impact of a single bout of resistance training performed either in the morning or evening upon acute anabolic signalling (insulin-like growth factor-binding protein-3 (IGFBP-3), myogenic index and differentiation) and catabolic processes (cortisol). Twenty-four male participants (age 21.4±1.9yrs, mass 83.7±13.7kg) with no sustained resistance training experience were allocated to a resistance exercise group (REP). Sixteen of the 24 participants were randomly selected to perform an additional non-exercising control group (CP) protocol. REP performed two bouts of resistance exercise (80% 1RM) in the morning (AM: 0800 hrs) and evening (PM: 1800 hrs), with the sessions separated by a minimum of 72 hours. Venous blood was collected immediately prior to, and 5 min after, each resistance exercise and control sessions. Serum cortisol and IGFBP-3 levels, myogenic index, myotube width, were determined at each sampling period. All data are reported as mean ± SEM, statistical significance was set at P≤0.05. As expected a significant reduction in evening cortisol concentration was observed at pre (AM: 98.4±10.5, PM: 49.8±4.4 ng/ml, P0.05). Timing of resistance training regimen in the evening appears to augment some markers of hypertrophic potential, with elevated IGFBP-3, suppressed cortisol and a superior cellular environment. Further investigation, to further elucidate the time course of peak anabolic signalling in morning vs evening training conditions, are timely

    GAS6 Enhances Repair Following Cuprizone-Induced Demyelination

    Get PDF
    Growth arrest-specific protein 6 (gas6) activities are mediated through the Tyro3, Axl, and Mer family of receptor tyrosine kinases. Gas6 is expressed and secreted by a wide variety of cell types, including cells of the central nervous system (CNS). In this study, we tested the hypothesis that administration of recombinant human Gas6 (rhGas6) protein into the CNS improves recovery following cuprizone withdrawal. After a 4-week cuprizone diet, cuprizone was removed and PBS or rhGas6 (400 ng/ml, 4 µg/ml and 40 µg/ml) was delivered by osmotic mini-pump into the corpus callosum of C57Bl6 mice for 14 days. Nine of 11 (82%) PBS-treated mice had abundant lipid-associated debris in the corpus callosum by Oil-Red-O staining while only 4 of 19 (21%) mice treated with rhGas6 had low Oil-Red-O positive droplets. In rhGas6-treated mice, SMI32-positive axonal spheroids and APP-positive deposits were reduced in number relative to PBS-treated mice. Compared to PBS, rhGas6 enhanced remyelination as revealed by MBP immunostaining and electron microscopy. The rhGas6-treated mice had more oligodendrocytes expressing Olig1 in the cytoplasm, indicative of oligodendrocyte progenitor cell maturation. Relative to PBS-treated mice, rhGas6-treated mice had fewer activated microglia in the corpus callosum by Iba1 immunostaining. The data show that rhGas6 treatment resulted in more efficient repair following cuprizone-induced injury

    Multiple receptor tyrosine kinases are expressed in adult rat retinal ganglion cells as revealed by single-cell degenerate primer polymerase chain reaction

    Get PDF
    BACKGROUND: To achieve a better understanding of the repertoire of receptor tyrosine kinases (RTKs) in adult retinal ganglion cells (RGCs) we performed polymerase chain reaction (PCR), using degenerate primers directed towards conserved sequences in the tyrosine kinase domain, on cDNA from isolated single RGCs univocally identified by retrograde tracing from the superior colliculi.RESULTS: All the PCR-amplified fragments of the expected sizes were sequenced, and 25% of them contained a tyrosine kinase domain. These were: Axl, Csf-1R, Eph A4, Pdgfrbeta, Ptk7, Ret, Ros, Sky, TrkB, TrkC, Vegfr-2, and Vegfr-3. Non-RTK sequences were Jak1 and 2. Retinal expression of Axl, Csf-1R, Pdgfrbeta, Ret, Sky, TrkB, TrkC, Vegfr-2, and Vegfr-3, as well as Jak1 and 2, was confirmed by PCR on total retina cDNA. Immunodetection of Csf-1R, Pdgfralpha/beta, Ret, Sky, TrkB, and Vegfr-2 on retrogradely traced retinas demonstrated that they were expressed by RGCs. Co-localization of Vegfr-2 and Csf-1R, of Vegfr-2 and TrkB, and of Csf-1R and Ret in retrogradely labelled RGCs was shown. The effect of optic nerve transection on the mRNA level of Pdgfrbeta, Csf-1R, Vegfr-2, Sky, and Axl, and of the Axl ligands Gas6 and ProteinS, was analysed. These analyses show transection-induced changes in Axl and ProteinS mRNA levels.CONCLUSIONS: The repertoire of RTKs expressed by RGCs is more extensive than previously anticipated. Several of the receptors found in this study, including Pdgfrbeta, Csf-1R, Vegfr-2, Sky, and Axl, and their ligands, have not previously been primarily associated with retinal ganglion cells

    Swimming Exercise Prevents Fibrogenesis in Chronic Kidney Disease by Inhibiting the Myofibroblast Transdifferentiation

    Get PDF
    BACKGROUND: The renal function of chronic kidney disease (CKD) patients may be improved by a number of rehabilitative mechanisms. Swimming exercise training was supposed to be beneficial to its recovery. METHODOLOGY/PRINCIPAL FINDINGS: Doxorubicin-induced CKD (DRCKD) rat model was performed. Swimming training was programmed three days per week, 30 or 60 min per day for a total period of 11 weeks. Serum biochemical and pathological parameters were examined. In DRCKD, hyperlipidemia was observed. Active mesangial cell activation was evidenced by overexpression of PDGFR, P-PDGFR, MMP-2, MMP-9, α-SMA, and CD34 with a huge amount collagen deposition. Apparent myofibroblast transdifferentiation implicating fibrogenesis in the glomerular mesangium, glomerulonephritis and glomeruloscelorosis was observed with highly elevated proteinuria and urinary BUN excretion. The 60-min swimming exercise but not the 30 min equivalent rescued most of the symptoms. To quantify the effectiveness of exercise training, a physical parameter, i.e. "the strenuosity coefficient" or "the myokine releasing coefficient", was estimated to be 7.154 × 10(-3) pg/mL-J. CONCLUSIONS: The 60-min swimming exercise may ameliorate DRCKD by inhibiting the transdifferentiation of myofibroblasts in the glomerular mesangium. Moreover, rehabilitative exercise training to rescue CKD is a personalized remedy. Benefits depend on the duration and strength of exercise, and more importantly, on the individual physiological condition

    STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    Get PDF
    Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia.Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer.These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are synthesized into acute phase proteins and exported into the blood
    corecore