144 research outputs found

    Requisits qualitolĂČgics de competĂšncia per als laboratoris clĂ­nics

    Get PDF

    Selbst gemacht ist gut gemacht? Der Einfluss von Self-Service Reporting auf die QualitÀt von Managemententscheidungen

    Get PDF
    Instrumente des Self-Service Reportings haben das Potenzial, datengetriebene Entscheidungsfindung auf allen Ebenen zu ermöglichen oder zu erleichtern. Der Einsatz dieser Technologie wird maßgebliche VerĂ€nderungen des Entscheidungsverhaltens mit sich bringen. Bisher existieren wenige wissenschaftliche Erkenntnisse darĂŒber, wie der Einsatz von Self-Service Reporting die QualitĂ€t der getroffenen Entscheidungen beeinflusst. Diese Arbeit geht eben jener Frage nach und untersucht die Auswirkungen auf die QualitĂ€t sowie die Bereitschaft zum Treffen der Entscheidung in einem Investitionskontext. Es wird ein Experiment mit zwei Gruppen durchgefĂŒhrt, bei dem die Probanden auf der Basis unterschiedlich prĂ€sentierter Informationen eine Auswahl vornehmen mĂŒssen. Die Ergebnisse des Experiments zeigen, dass der Einsatz von Self-Service Reporting einen negativen Einfluss auf die QualitĂ€t von Entscheidungen hat und zu einer geminderten Entscheidungsbereitschaft fĂŒhrt. Keywords: Self-Service; Entscheidungsverhalten; Investition; Bias

    Perpendicularly magnetized Mn-Co-Ga-based thin films with high coercive field

    Full text link
    Mn3−x_{3-x}Cox_{x}Ga epitaxial thin films were grown on MgO substrates by magnetron co-sputtering. Structures were tetragonal or cubic depending on Co content. Composition dependence of saturation magnetization and uniaxial magnetic anisotropy KuK_u of the films were investigated. A high KuK_u (1.2 MJ m−3^{-3}) was achieved for the Mn2.6_{2.6}Co0.3_{0.3}Ga1.1_{1.1} film with the magnetic moment 0.84ÎŒB\mu_B. Valence band spectra were obtained by hard X-ray photoelectron spectroscopy. Sharp peaks in the cubic case, which were absent in the tetragonal case, prove that a van Hove singularity causes a band Jahn-Teller effect with tetragonal distortion. Observations agree well with the first-principles calculations

    Completely compensated ferrimagnetism and sublattice spin crossing in the half-metallic Heusler compound Mn1.5FeV0.5Al

    Full text link
    The Slater-Pauling rule states that L21 Heusler compounds with 24 valence electrons do never exhibit a total spin magnetic moment. In case of strongly localized magnetic moments at one of the atoms (here Mn) they will exhibit a fully compensated half-metallic ferrimagnetic state instead, in particular, when symmetry does not allow for antiferromagnetic order. With aid of magnetic and anomalous Hall effect measurements it is experimentally demonstrated that Mn1.5V0.5FeAl follows such a scenario. The ferrimagnetic state is tuned by the composition. A small residual magnetization, that arises due to a slight mismatch of the magnetic moments in the different sublattices results in a pronounced change of the temperature dependence of the ferrimagnet. A compensation point is confirmed by observation of magnetic reversal and sign change of the anomalous Hall effect. Theoretical models are presented that correlate the electronic structure and the compensation mechanisms of the different half-metallic ferrimagnetic states in the Mn-V-Fe-Al Heusler system.Comment: Under revie

    Evidence for Localized Moment Picture in Mn-based Heusler Compounds

    Full text link
    X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) were used to probe the oxidation state and element specific magnetic moments of Mn in Heusler compounds with different crystallographic structure. The results were compared with theoretical calculations, and it was found that in full Heusler alloys, Mn is metallic (oxidation state near 0) on both sublattices. The magnetic moment is large and localized when octahedrally coordinated by the main group element, consistent with previous theoretical work, and reduced when the main group coordination is tetrahedral. By contrast, in the half Heusler compounds the magnetic moment of the Mn atoms is large and the oxidation state is +1 or +2. The magnetic and electronic properties of Mn in full and half Heusler compounds are strongly dependent on the structure and sublattice, a fact that can be exploited to design new materials.Comment: 15 pages, 4 figure

    From colossal to zero: Controlling the Anomalous Hall Effect in Magnetic Heusler Compounds via Berry Curvature Design

    Get PDF
    Since the discovery of the anomalous Hall effect (AHE), the anomalous Hall conductivity (AHC) has been thought to be zero when there is no net magnetization. However, the recently found relation between the intrinsic AHE and the Berry curvature predicts other possibilities, such as a large AHC in non-colinear antiferromagnets with no net magnetization but net Berry curvature. Vice versa, the AHE in principle could be tuned to zero, irrespective of a finite magnetization. Here, we experimentally investigate this possibility and demonstrate that, the symmetry elements of Heusler magnets can be changed such that the Berry curvature and all the associated properties are switched while leaving the magnetization unaffected. This enables us to tune the AHC from 0 {\Omega}-1cm-1 up to 1600 {\Omega}-1cm-1 with an exceptionally high anomalous Hall angle up to 12 %, while keeping the magnetization same. Our study shows that the AHC can be controlled by selectively changing the Berry curvature distribution, independent of the magnetization.Comment: Published in Physical Review X. 16 pages, 5 figure

    a review

    Get PDF
    It is well documented that global warming is unequivocal. Dairy production systems are considered as important sources of greenhouse gas emissions; however, little is known about the sensitivity and vulnerability of these production systems themselves to climate warming. This review brings different aspects of dairy cow production in Central Europe into focus, with a holistic approach to emphasize potential future consequences and challenges arising from climate change. With the current understanding of the effects of climate change, it is expected that yield of forage per hectare will be influenced positively, whereas quality will mainly depend on water availability and soil characteristics. Thus, the botanical composition of future grassland should include species that are able to withstand the changing conditions (e.g. lucerne and bird's foot trefoil). Changes in nutrient concentration of forage plants, elevated heat loads and altered feeding patterns of animals may influence rumen physiology. Several promising nutritional strategies are available to lower potential negative impacts of climate change on dairy cow nutrition and performance. Adjustment of feeding and drinking regimes, diet composition and additive supplementation can contribute to the maintenance of adequate dairy cow nutrition and performance. Provision of adequate shade and cooling will reduce the direct effects of heat stress. As estimated genetic parameters are promising, heat stress tolerance as a functional trait may be included into breeding programmes. Indirect effects of global warming on the health and welfare of animals seem to be more complicated and thus are less predictable. As the epidemiology of certain gastrointestinal nematodes and liver fluke is favourably influenced by increased temperature and humidity, relations between climate change and disease dynamics should be followed closely. Under current conditions, climate change associated economic impacts are estimated to be neutral if some form of adaptation is integrated. Therefore, it is essential to establish and adopt mitigation strategies covering available tools from management, nutrition, health and plant and animal breeding to cope with the future consequences of climate change on dairy farming

    Bringing Stellar Evolution & Feedback Together: Summary of proposals from the Lorentz Center Workshop, 2022

    Full text link
    Stars strongly impact their environment, and shape structures on all scales throughout the universe, in a process known as ``feedback''. Due to the complexity of both stellar evolution and the physics of larger astrophysical structures, there remain many unanswered questions about how feedback operates, and what we can learn about stars by studying their imprint on the wider universe. In this white paper, we summarize discussions from the Lorentz Center meeting `Bringing Stellar Evolution and Feedback Together' in April 2022, and identify key areas where further dialogue can bring about radical changes in how we view the relationship between stars and the universe they live in.Comment: Accepted to the Publications of the Astronomical Society of the Pacifi
    • 

    corecore