110 research outputs found

    A non‐proteolytic release mechanism for HMCES‐DNA‐protein crosslinks

    Get PDF
    The conserved protein HMCES crosslinks to abasic (AP) sites in ssDNA to prevent strand scission and the formation of toxic dsDNA breaks during replication. Here, we report a non‐proteolytic release mechanism for HMCES‐DNA‐protein crosslinks (DPCs), which is regulated by DNA context. In ssDNA and at ssDNA‐dsDNA junctions, HMCES‐DPCs are stable, which efficiently protects AP sites against spontaneous incisions or cleavage by APE1 endonuclease. In contrast, HMCES‐DPCs are released in dsDNA, allowing APE1 to initiate downstream repair. Mechanistically, we show that release is governed by two components. First, a conserved glutamate residue, within HMCES' active site, catalyses reversal of the crosslink. Second, affinity to the underlying DNA structure determines whether HMCES re‐crosslinks or dissociates. Our study reveals that the protective role of HMCES‐DPCs involves their controlled release upon bypass by replication forks, which restricts DPC formation to a necessary minimum

    mTORC1 activity is supported by spatial association with focal adhesions

    Get PDF
    The mammalian target of rapamycin complex 1 (mTORC1) integrates mitogenic and stress signals to control growth and metabolism. Activation of mTORC1 by amino acids and growth factors involves recruitment of the complex to the lysosomal membrane and is further supported by lysosome distribution to the cell periphery. Here, we show that translocation of lysosomes toward the cell periphery brings mTORC1 into proximity with focal adhesions (FAs). We demonstrate that FAs constitute discrete plasma membrane hubs mediating growth factor signaling and amino acid input into the cell. FAs, as well as the translocation of lysosome-bound mTORC1 to their vicinity, contribute to both peripheral and intracellular mTORC1 activity. Conversely, lysosomal distribution to the cell periphery is dispensable for the activation of mTORC1 constitutively targeted to FAs. This study advances our understanding of spatial mTORC1 regulation by demonstrating that the localization of mTORC1 to FAs is both necessary and sufficient for its activation by growth-promoting stimuli

    Angioplasty in asymptomatic carotid artery stenosis vs. endarterectomy compared to best medical treatment: One-year interim results of SPACE-2

    Get PDF
    BACKGROUND Treatment of individuals with asymptomatic carotid artery stenosis is still handled controversially. Recommendations for treatment of asymptomatic carotid stenosis with carotid endarterectomy (CEA) are based on trials having recruited patients more than 15 years ago. Registry data indicate that advances in best medical treatment (BMT) may lead to a markedly decreasing risk of stroke in asymptomatic carotid stenosis. The aim of the SPACE-2 trial (ISRCTN78592017) was to compare the stroke preventive effects of BMT alone with that of BMT in combination with CEA or carotid artery stenting (CAS), respectively, in patients with asymptomatic carotid artery stenosis of \geq70% European Carotid Surgery Trial (ECST) criteria. METHODS SPACE-2 is a randomized, controlled, multicenter, open study. A major secondary endpoint was the cumulative rate of any stroke (ischemic or hemorrhagic) or death from any cause within 30 days plus an ipsilateral ischemic stroke within one year of follow-up. Safety was assessed as the rate of any stroke and death from any cause within 30 days after CEA or CAS. Protocol changes had to be implemented. The results on the one-year period after treatment are reported. FINDINGS It was planned to enroll 3550 patients. Due to low recruitment, the enrollment of patients was stopped prematurely after randomization of 513 patients in 36 centers to CEA (n = 203), CAS (n = 197), or BMT (n = 113). The one-year rate of the major secondary endpoint did not significantly differ between groups (CEA 2.5%, CAS 3.0%, BMT 0.9%; p = 0.530) as well as rates of any stroke (CEA 3.9%, CAS 4.1%, BMT 0.9%; p = 0.256) and all-cause mortality (CEA 2.5%, CAS 1.0%, BMT 3.5%; p = 0.304). About half of all strokes occurred in the peri-interventional period. Higher albeit statistically non-significant rates of restenosis occurred in the stenting group (CEA 2.0% vs. CAS 5.6%; p = 0.068) without evidence of increased stroke rates. INTERPRETATION The low sample size of this prematurely stopped trial of 513 patients implies that its power is not sufficient to show that CEA or CAS is superior to a modern medical therapy (BMT) in the primary prevention of ischemic stroke in patients with an asymptomatic carotid stenosis up to one year after treatment. Also, no evidence for differences in safety between CAS and CEA during the first year after treatment could be derived. Follow-up will be performed up to five years. Data may be used for pooled analysis with ongoing trials

    Global and regional brain metabolic scaling and its functional consequences

    Get PDF
    Background: Information processing in the brain requires large amounts of metabolic energy, the spatial distribution of which is highly heterogeneous reflecting complex activity patterns in the mammalian brain. Results: Here, it is found based on empirical data that, despite this heterogeneity, the volume-specific cerebral glucose metabolic rate of many different brain structures scales with brain volume with almost the same exponent around -0.15. The exception is white matter, the metabolism of which seems to scale with a standard specific exponent -1/4. The scaling exponents for the total oxygen and glucose consumptions in the brain in relation to its volume are identical and equal to 0.86±0.030.86\pm 0.03, which is significantly larger than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on body mass. Conclusions: These findings show explicitly that in mammals (i) volume-specific scaling exponents of the cerebral energy expenditure in different brain parts are approximately constant (except brain stem structures), and (ii) the total cerebral metabolic exponent against brain volume is greater than the much-cited Kleiber's 3/4 exponent. The neurophysiological factors that might account for the regional uniformity of the exponents and for the excessive scaling of the total brain metabolism are discussed, along with the relationship between brain metabolic scaling and computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen

    Co-regulation map of the human proteome enables identification of protein functions

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability: All mass spectrometry raw files generated in-house have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository36 with the dataset identifier PXD008888. The co-regulation map is hosted on our website at www.proteomeHD.net, and pair-wise co-regulation scores are available through STRING (https://string-db.org). A network of the top 0.5% co-regulated protein pairs can be explored interactively on NDEx (https://doi.org/10.18119/N9N30Q).Code availability: Data analysis was performed in R 3.5.1. R scripts and input files required to reproduce the results of this manuscript are available in the following GitHub repository: https://github.com/Rappsilber-Laboratory/ProteomeHD. R scripts related specifically to the benchmarking of the treeClust algorithm using synthetic data are available in the following GitHub repository: https://github.com/Rappsilber-Laboratory/treeClust-benchmarking. The R package data.table was used for fast data processing. Figures were prepared using ggplot2, gridExtra, cowplot and viridis.Note that the title of the AAM is different from the published versionThe annotation of protein function is a longstanding challenge of cell biology that suffers from the sheer magnitude of the task. Here we present ProteomeHD, which documents the response of 10,323 human proteins to 294 biological perturbations, measured by isotope-labelling mass spectrometry. We reveal functional associations between human proteins using the treeClust machine learning algorithm, which we show to improve protein co-regulation analysis due to robust selectivity for close linear relationships. Our co-regulation map identifies a functional context for many uncharacterized proteins, including microproteins that are difficult to study with traditional methods. Co-regulation also captures relationships between proteins which do not physically interact or co-localize. For example, co-regulation of the peroxisomal membrane protein PEX11ÎČ with mitochondrial respiration factors led us to discover a novel organelle interface between peroxisomes and mitochondria in mammalian cells. The co-regulation map can be explored at www.proteomeHD.net .Biotechnology & Biological Sciences Research Council (BBSRC)European Commissio

    Determination of nutrient salts by automatic methods both in seawater and brackish water: the phosphate blank

    Get PDF
    9 pĂĄginas, 2 tablas, 2 figurasThe main inconvenience in determining nutrients in seawater by automatic methods is simply solved: the preparation of a suitable blank which corrects the effect of the refractive index change on the recorded signal. Two procedures are proposed, one physical (a simple equation to estimate the effect) and the other chemical (removal of the dissolved phosphorus with ferric hydroxide).Support for this work came from CICYT (MAR88-0245 project) and Conselleria de Pesca de la Xunta de GaliciaPeer reviewe

    Identification and characterization of the eps (Exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6.

    No full text
    We report the identification and characterization of the eps gene cluster of Streptococcus thermophilus Sfi6 required for exopolysaccharide (EPS) synthesis. This report is the first genetic work concerning EPS production in a food microorganism. The EPS secreted by this strain consists of the following tetrasaccharide repeating unit:-->3)-beta-D-Galp-(1-->3)-[alpha-D-Galp-(1-->6)]-beta-D- D-Galp-(1-->3)-alpha-D-Galp-D-GalpNAc-(1-->. The genetic locus The genetic locus was identified by Tn916 mutagenesis in combination with a plate assay to identify Eps mutants. Sequence analysis of the gene region, which was obtained from subclones of a genomic library of Sfi6, revealed a 15.25-kb region encoding 15 open reading frames. EPS expression in the non-EPS-producing heterologous host, Lactococcus lactis MG1363, showed that within the 15.25-kb region, a region with a size of 14.52 kb encoding the 13 genes epsA to epsM was capable of directing EPS synthesis and secretion in this host. Homology searches of the predicted proteins in the Swiss-Prot database revealed high homology (40 to 68% identity) for epsA, B, C, D, and E and the genes involved in capsule synthesis in Streptococcus pneumoniae and Streptococcus agalactiae. Moderate to low homology (37 to 18% identity) was detected for epsB, D, F, and H and the genes involved in capsule synthesis in Staphylococcus aureus for epsC, D, and E and the genes involved in exopolysaccharide I (EPSI) synthesis in Rhizobium meliloti for epsC to epsJ and the genes involved in lipopolysaccharide synthesis in members of the Enterobacteriaceae, and finally for eps K and lipB of Neisseria meningitidis. Genes (epsJ, epsL, and epsM) for which the predicted proteins showed little or no homology with proteins in the Swiss-Prot database were shown to be involved in EPS synthesis by single-crossover gene disruption experiments

    Transcranial oximetry using fast near infrared spectroscopy can detect failure of collateral blood supply in humans

    Full text link
    We tested the hypothesis that transcranial oximetry by fast scanning near infrared spectroscopy can detect local desaturation of hemoglobin in arterial vessels of cerebral circulation with impaired blood supply. A total of 74 near infrared spectroscopy recordings were taken from the intact skull of humans. Perfusion of the hemisphere under the detector was assessed in one of four groups: (1) healthy volunteer; (2) patient, unaffected side; (3) patient, affected side with intact collateral blood supply; (4) patient, affected side, impaired collateral blood supply. Transcranial saturation was 0.90+/-0.01 (all values reported as mean+/-S.E.) in healthy volunteers (n=24), 0.92+/-0.008 in the unaffected hemisphere of patients (n=23), 0.92+/-0.001 in the affected side if collateral supply with blood was intact (n=16). There was no statistical significance between these groups. Saturation in affected hemispheres with impaired collateral blood supply (n=9) was 0.81+/-0.028, which was significantly different from all other groups (P<0.05, one way-ANOVA). We conclude, that transcranial pulse oximetry can detect local hypoxia if collateral blood supply fails
    • 

    corecore