
Giam and Rancati Cell Division  (2015) 10:3 
DOI 10.1186/s13008-015-0009-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref
REVIEW Open Access
Aneuploidy and chromosomal instability in cancer:
a jackpot to chaos
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Abstract

Genomic instability (GIN) is a hallmark of cancer cells that facilitates the acquisition of mutations conferring aggressive
or drug-resistant phenotypes during cancer evolution. Chromosomal instability (CIN) is a form of GIN that involves
frequent cytogenetic changes leading to changes in chromosome copy number (aneuploidy). While both CIN and
aneuploidy are common characteristics of cancer cells, their roles in tumor initiation and progression are unclear. On
the one hand, CIN and aneuploidy are known to provide genetic variation to allow cells to adapt in changing
environments such as nutrient fluctuations and hypoxia. Patients with constitutive aneuploidies are more susceptible to
certain types of cancers, suggesting that changes in chromosome copy number could positively contribute to cancer
evolution. On the other hand, chromosomal imbalances have been observed to have detrimental effects on cellular
fitness and might trigger cell cycle arrest or apoptosis. Furthermore, mouse models for CIN have led to conflicting
results. Taken together these findings suggest that the relationship between CIN, aneuploidy and cancer is more
complex than what was previously anticipated. Here we review what is known about this complex ménage à trois,
discuss recent evidence suggesting that aneuploidy, CIN and GIN together promote a vicious cycle of genome chaos.
Lastly, we propose a working hypothesis to reconcile the conflicting observations regarding the role of aneuploidy and
CIN in tumorigenesis.
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Genomic instability: an engine fueling cancer
progression
Cancer is a multi-stage somatic evolutionary process,
where cells that have acquired mutations conferring
beneficial phenotypic traits, such as sustained prolifera-
tive signaling or resistance to cell death, clonally expand
and outcompete less fit neighboring cells [1–3]. Cancer
cells are notoriously known for their aberrant and com-
plex genomes and for their large cell-to-cell variation.
The genomic diversity present in cancer cells ranges
from single nucleotide changes to large-scale cytogenetic
alterations and is caused by increased genomic instability
(GIN) [4–8]. GIN, a cellular state characterized by an in-
creased frequency of accumulating genetic alterations, is
a consequence of mutations affecting pathways regulat-
ing: 1) DNA replication fidelity in S phase (including
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telomere maintenance), 2) cell cycle progression and
checkpoint control, 3) proper chromosome segregation in
mitosis, and 4) repair of sporadic DNA damage [9]. GIN
has been described as an enabling characteristic of cancer
cells as it increases the chances of acquiring beneficial
mutations, thus enabling the acquisition of other cancer
hallmarks [8, 10–12]. Importantly, GIN also increases cell-
to-cell variation, leading to accumulation of standing gen-
etic variation that could facilitate the adaptation of cancer
cell populations to harsh and fluctuating milieus typical of
the tumor microenvironment [13, 14]. In accordance with
this view, genomic instability has been correlated with
tumor progression and is associated with poor prognosis
for certain types of cancer [5, 14–16]. Among the many
proteins counteracting GIN by ensuring genome surveil-
lance and maintenance is the tumor suppressor p53, nick-
named the ‘Guardian of the Genome’ [17]. p53 critically
determines the fate of cells experiencing DNA damage, ac-
tivating cell cycle arrest, senescence or apoptosis depend-
ing on the severity of the insult [18]. Loss of p53, though
occurring at different stages and sometimes relatively late
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in the development of some tumors [19, 20], could remove
a major block of genetic instability and allow cancer cells
to accumulate further oncogenic mutations in order to
progress towards increased aggressiveness [21–23].
There are two main classes of GIN: nucleotide in-

stability and chromosomal instability (CIN) [5]. While
nucleotide mutations include base substitutions, dele-
tions and insertions, mutations at the cytogenetic level
include gains and losses of whole or parts of chromo-
somes as well as simple or complex chromosomal rear-
rangements. Since the link between mutations increasing
nucleotide instability and cancer predisposition has been
well established [5], in this review we will focus on the
more controversial role of CIN and its ‘by-product’ aneu-
ploidy in cellular transformation and tumor progression.

Chromosomal instability and aneuploidy: friends
or foes of cellular transformation?
Chromosomal instability (CIN) refers to an increased
rate of chromosome missegregation due to errors in mi-
tosis [24, 25]. One of the main products of CIN is aneu-
ploidy, a condition associated with the gain or loss of
whole chromosomes or parts thereof leading to genomic
imbalances (Fig. 1). There are many roads leading to CIN:
multipolar spindles, improper chromosome condensation
or cohesion, inefficient chromosome congression, defects
in mitotic spindle assembly/dynamics, defective mitotic
checkpoint and telomere attrition, replication stress, and
Fig. 1 Aneuploidy, CIN and GIN loop together to tumorigenesis. Aneuploid
genes found on the aneuploid chromosome. Increasing or decreasing the
have direct effects on cellular transformation. Additionally, while CIN leads
can lead to CIN by changing the stoichiometry of protein complexes requi
the presence of extra DNA. At the same time, chromosome missegregati
are considered mutator phenotypes that could potentially enhance the c
tumorigenesis. Their ‘by-products’, aneuploidy and DNA damage generate ge
tumor microenvironment
improper kinetochore-microtubules attachments [25–27].
To add even more complexity, recent studies proposed
that aneuploidy itself could lead to CIN (Fig. 1 and dis-
cussed below), suggesting the presence of a positive feed-
back loop resulting in increasing levels of aneuploidy.
As with genomic instability, CIN has been suggested

to provide phenotypic variation and increase tumor het-
erogeneity, therefore fuelling the ability of cancer cells to
progress, adapt to chemotherapy or to relapse [28]. Ac-
cordingly, in a large proportion of tumors, CIN occurs
at early stages and it has been associated with poor
prognosis and increased aggressiveness in multiple types
of human cancer [29]. Moreover, CIN has been shown
to drive metastasis after the shut-off of the oncogenic
stimulus in a mouse model of KRAS-induced lung can-
cer [30], suggesting that the genomic changes induced
by CIN are able to sustain cancer evolution upon onco-
gene withdrawal. Chromosomally unstable cancer cells
also exhibit increased intrinsic multidrug resistance
when compared to their stable counterparts [14, 31, 32].
However, the relationship between CIN and drug resist-
ance is far from simple. Indeed, by stratifying tumors
using a CIN expression signature, Swanton and col-
leagues found that breast tumors with the lowest or the
highest CIN signatures were associated with improved
prognosis relative to those with intermediate scores [15].
The same trend was also observed in ovarian, gastric and
non-small cell lung cancer [15], suggesting the existence
y results in direct changes in mRNA and protein expression levels of
dosage of oncogenes (OG) and tumor suppressor genes (TSG) can
to aneuploidy via increased chromosome missegregation, aneuploidy
red for genome maintenance or by scaling defects brought about by
on has the potential to increase DNA damage and GIN. CIN and GIN
hance of accumulating oncogenic mutations, thus promoting
netic variation, allowing cells to have increased adaptive potential in the
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of an intermediate “sweet spot” for CIN to induce aggres-
sive cancer behavior (see below for further discussion on
this point).
A major question remains whether CIN is sufficient to

initiate tumorigenesis? Indications supporting this hy-
pothesis come from analysis of human patients with mo-
saic variegated aneuploidy syndrome (MVA). The MVA
syndrome has been mapped to mutations in either the
SAC protein BUBR1 or in the centrosomal protein CEP57
and is characterized by increased CIN [33, 34]. MVA pa-
tients are mosaic for different karyotypes and on top of
developmental defects they are predisposed to childhood
cancer [33–36], supporting the idea that CIN could lead
to cancer in humans.
However, most of what we know in this regard comes

from mouse models, many of which focus on partial in-
activation of proteins which are either directly involved
in the spindle assembly checkpoint (SAC), part of the
signaling downstream of the SAC (e.g. securin or APC
co-factors) or required for proper chromosome alignment
(e.g. CENP-E) (summarized in Table 1 and reviewed in
[37, 38]). While CENP-E is a motor protein required for
stable spindle microtubule capture at kinetochores [39],
the SAC is a conserved surveillance signaling cascade that
inhibits anaphase onset in response to mis-attached chro-
mosomes [40, 41]. A weakened CENP-E or SAC results ei-
ther in increased chromosome mis-alignments or in an
inability to resolve them, thus leading to chromosome
missegregation and subsequent formation of aneuploidy.
While homozygous knockouts of CENP-E or of any SAC
signaling genes (including MAD1, MAD2, MPS1, BUB1,
BUBR1, BUB3, the Bub3-related protein RAE1, and the
APC cofactors CDC20 and FZR1) result in massive
chromosome segregation defects and early embryonic
lethality, heterozygous mice are born viable and display
no overt phenotypes [37, 38, 42, 43]. Consistent with
the hypothesis that CIN is sufficient to initiate cancer,
heterozygous offspring of Mad1, Mad2 and CENP-E
knock-out mice, as well as offspring of a Bub1 hypo-
morphic mouse strain showed increased incidence of spon-
taneous tumors mainly in the lung and the hematopoietic
system (Table 1) [44–47]. Some mouse strains did not
show increased spontaneous tumor formation but in-
stead exhibited increased tumor onset when challenged
with chemical carcinogens such as dimethylbenzanthra-
cene (DMBA) or azoxymethane (AOM) (Table 1). In
contrast, haploinsufficiency of Bub3 or Rae1 did not re-
sult in increased tumorigenesis [48, 49], and some mouse
models even showed decreased tumor formation when
challenged with carcinogens, suggesting that the rela-
tionship between impaired SAC signaling, aneuploidy
and tumor onset is complex. Consistently, while over-
expression of some SAC genes such as MAD2 and
BUB1 has been shown to induce CIN and cancer onset,
overexpression of BUBR1 has protective effects on spon-
taneous tumor development and accumulation of aneu-
ploidy (Table 1) [50–52].
However, many of the reported mouse tumor pheno-

types showed incomplete penetrance and typically emerged
after a long latency or required carcinogens to emerge
(Table 1). Indeed while only ~20 % of CENP-E+/− mice de-
velop tumors in either the spleen or lung at 18–20 months
of age [46], BubR1+/− mice do so only when treated with
AOM [53]. How can we reconcile these observations that
some CIN mouse models are capable of developing spon-
taneous tumors albeit with long latency but others have no
effect on cancer onset or need to be induced by carcino-
gens? On the one hand, it is conceivable that only spe-
cific aneuploid karyotypes favor tumorigenesis or that
additional oncogenic mutations (such as presence of onco-
genes or inactivation of tumor-suppressor genes) are
needed for transformation (discussed below, Fig. 2).
This may indicate that the acquisition of a “jackpot”
tumor-promoting karyotype would be stochastic, poten-
tially explaining the long latency, low penetrance and low
frequency of the onset of spontaneous tumors. Alterna-
tively, the observed differences in cancer susceptibility
could be due to different levels of CIN in the various
mouse models. Indeed, the levels of CIN present in these
different mouse models has been poorly characterized due
to the technical difficulty of visualizing chromosomes in
mouse solid tissues. Various tissues within each mouse
mutant could accumulate different levels of CIN, explain-
ing why certain tissue types are more prone to transform-
ation than others. Another possibility stems from the
observation that SAC genes have other non-mitotic
functions, making it difficult to disentangle which func-
tion is associated to increased cancer susceptibility. In-
deed, Mad1 may play a role also in nuclear transport
while Mad2 may be involved in the DNA replication
checkpoint in yeast [54, 55]. Moreover, BubR1 has been
shown to participate in various processes including the
DNA damage response and aging, whereas Bub3 can
contribute to transcriptional repression during inter-
phase [56–58]. Lastly, while moderate levels of CIN
and genome instability could support cancer evolution
[15], too much of it might actually hinder the process.
From this angle, the observation that some mouse models
show decreased tumor onset when challenged with carcin-
ogens could be explained by an exacerbation of CIN
driven by drug administration [46, 59] (see below for fur-
ther discussion).
Aneuploidy is a consequence of CIN and the degree of

CIN frequently correlates with karyotypic complexity [60].
However, since cancer genomes are highly complex and
contain additional mutations besides chromosome copy
number changes, it remains controversial whether aneu-
ploidy acts as a driving force or as a foe of tumorigenesis.



Table 1 Cancer phenotypes of CIN mouse models

Gene Mitotic Function Cancer phenotype of resulting mice References

Genotype Spontaneous tumors Chemically-induced tumors Crossed with tumor-prone backgrounds

Bub1 SAC +/− Not observed DMBA-induced ( ) p53+/− and p53−/− (=); ApcMin/+ (colon ) [47, 125, 127]

H/H, H/− (*) Tumors in various tissues in ~50 %
of 20 months-old mice

NT p53+/− and p53−/− ( ); ApcMin/+ (colon );
Rb+/− (=); Pten+/− ( )

[47, 125, 127]

overexp. Tumors in various tissues in 60-70 %
of 12–16 months-old mice

NT NT [51]

Mad1 SAC +/− Lung tumors in 19 % of 18 months-
old mice

Vinicristine-induced ( ) p53+/− (=) [44, 126]

Mad2 SAC +/− Lung tumors in 30 % of 18 months-
old mice

NT p53+/− ( ) [45, 126]

overexp. Tumors in various tissues in 50 % of
12–20 months-old mice

NT Eu-Myc ( ); KRASG12D ( ) [30, 52]

Mad1;
Mad2

SAC +/−; +/− NT NT p53+/− ( ) [126]

BubR1 SAC +/− Not observed AOM-induced ( ) ApcMin/+ (colon small intestine ) [53, 57, 122]

H/H(*) Not observed DMBA-induced ( ) p53−/− ( incidence but shortened
osteosarcoma latency and accelerated
aging onset)

[57, 134, 135]

overexp. Decreased DMBA-induced ( ) KRASG12D ( ) [50]

Bub3 SAC +/− Not observed DMBA-induced (=) p53+/− (=); Rb1+/− (=) [48, 49]

Rae1 SAC +/− Not observed DMBA-induced (=) NT [48]

Bub3;
Rae1

SAC +/−; +/− Not observed DMBA-induced ( ) NT [48]

Mps1 SAC DK/DK (**) Not observed NT p53fl/+ Lck-Cre + ( T-ALL) [128]

DK/fl (**) NT NT p53fl/fl Lck-Cre + (=) [128]

CENP-
E

Chromosome
congression, SAC

+/− Lung and/or spleen tumors in 20 %
of 19-21month mice but decreased
incidence of liver tumors

DMBA-induced ( ) p19/ARF−/− ( ); Mad2+/− ( ) [46, 59]

Fzr1
(Cdh1)

APC/C cofactor +/− Mammary gland and other epithelial
tumors in 25 % 20-30month mice

DMBA/TPA-induced skin
carcinomas ( )

NT [42]

Cdc20 APC/C cofactor +/AAA (***) Hepatomas and lymphomas in 50 %
of 24 month mice

NT p53−/− ( ); Atm−/− ( ) [43, 125]

Pttg1 Securin, prevents
chromatid separation

−/− Testicular and splenic hypoplasia,
thymic hyperplasia

NT Rb+/− ( ) [123, 136]

overexp. (transgenic mouse
expressing human securin in pituitary
cells)

Hyperplasia and microadenomas NT Rb+/− (anterior lobe ; intermediate lobe =) [137, 138]

Lck-Cre: a Cre recombinase expressed under the control of the Lck (lymphocyte protein tyrosine kinase) promoter, promoting excision in a thymocyte-specific manner; (*) H: hypomorphic allele; (**) DK: kinetochore
binding mutant; (***) AAA: Mad2 binding mutant; NT: not tested; ( ) increased tumor formation; ( ) decreased tumor formation; (=) no changes in tumor formation
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Fig. 2 The interplay between the pro- and anti-tumorigenic effects of aneuploidy determines whether cancer is suppressed or promoted. Shown
here is a simplistic view of two hypothetical karyotypes and the factors that may come into play to determine their tumorigenic potential
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An argument supporting the latter hypothesis is that while
cancer is a disease of uncontrolled cellular proliferation,
aneuploidy has been demonstrated to have deleterious ef-
fects on cellular fitness in both yeast and mammalian cells
[61–63]. For example, trisomic mouse embryonic fibro-
blasts (MEFs) displayed decreased growth and resistance
to immortalization in respect to their euploid counterparts
[64]. However, analysis of proliferation is typically assayed
under optimal growth conditions where euploid cells are
at the peak of their fitness. It is important to note that cel-
lular fitness is context-dependent and that the aneuploidy-
driven phenotypic variation could allow for adaptation
to stressful or harsh environments, conditions where
euploid cells are not well adapted [62]. In accordance,
several observations have been reported where, in chal-
lenging environments, aneuploid eukaryotic cells hold
fitness advantages in respect to their euploid counter-
parts [25, 62, 65]. Since this topic has been recently
reviewed [62, 66, 67], here we will only briefly describe
a few studies that utilized different model systems. Half
of the clinical isolates of the pathogenic yeast Candida
albicans that are resistant to the antifungal drug flucona-
zole carry extra copies of chromosome 5 [68]. Interest-
ingly, the drug target, ERG11, and a main regulator of
drug efflux pumps, TAC1, genes are both encoded on
chromosome 5 [69], indicating that aneuploidy could pro-
vide drug resistance by up-regulating the expression of
these genes. In the non-pathogenic yeast Saccharomy-
ces cerevisiae, aneuploid strains have been shown to
display phenotypic advantages in stressful environments
or under genetic challenges [70, 71]. Moreover, in the
same model system, it has been recently shown that
karyotypic diversity allowed adaptation to cytotoxic com-
pounds [72]. In mammalian cells, human pluripotent stem
cells (hPSCs) frequently acquire recurrent karyotypic
changes in culture [73]. It has been proposed that these
aneuploidies are selected during expansion because they
confer increased survival to apoptotic signals and reduced
differentiation potential [74]. Indeed, hPSCs trisomic for
chromosome 12 were found to have increased rates of
replication, enhanced tumorigenicity, and gene expression
profiles that were similar to germ cell tumors [75]. Human
embryonic cells (HE35) with an extra chromosome 8 dis-
played decreased proliferation rates but lost contact in-
hibition [76], suggesting that aneuploidy could provide
phenotypic traits typical of transformed cells. These
studies provide evidence that while aneuploidy is detri-
mental in conditions where the euploid state is at its
peak of fitness, it could provide selective advantage in
harsh environments leading to its selection and fixation
in the population. Since cancer cells have to acquire
phenotypic traits that make them successful in harsh
conditions (such as hypoxia or presence of chemother-
apy), aneuploidy could act as a mutation that contrib-
utes positively to their success (Fig. 1).
Another argument supporting the “foe hypothesis”

stems from the observation that aneuploidy has been
associated with defective development and lethality in
multicellular organisms [63]. In mice and humans, all
autosomal monosomies and almost all trisomies result
in embryonic lethality. Only mouse trisomy 19 and hu-
man trisomy 13, 18, and 21 (Patau, Edward’s and Down
syndrome, respectively) are viable although patients de-
velop numerous developmental defects and premature
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death [77, 78]. Since aneuploidy profoundly affects the
transcriptome [61, 71, 79, 80], these embryonic and or-
ganismal defects are most likely caused by deregulation
of the transcriptional programs that underlie develop-
ment. But what is deleterious for multicellular organisms
might not be bad for individual cells. Indeed, as discussed
above, aneuploidy-induced transcriptional changes might
confer selective advantage to cancer cells that escaped
cellular homeostasis mechanisms [65].
On the other hand, many observations support the hy-

pothesis that whole-chromosome aneuploidy could serve
as a driver of cellular transformation [38, 81–83]. Aneu-
ploidy is frequently found in cancer and about 70 % of
all solid tumors are aneuploid [84]. Supporting the idea
that aneuploidy is not just a simple byproduct of trans-
formation, recurrent chromosome gains and losses be-
tween cancer cells were found when Roschke et al.
profiled the karyotypes of the NCI-60 panel of cancer cell
lines [85]. Collection of cytogenetic analyses from a large
dataset also showed recurrent karyotypic patterns in pri-
mary tumors [60]. Two of the most recurrent cytogenetic
abnormalities observed among different types of cancers
were gain of chromosome 8q (encoding the MYC onco-
gene) and loss of 17p (encoding the TP53 tumor suppres-
sor gene) [60], suggesting that aneuploidy could underlie
transformation by amplification of oncogenes or loss of
tumor suppressors (Fig. 1). Providing compelling evidence
in favor of this hypothesis, a recent study found that
the number of tumor suppressor genes and oncogenes
encoded on each chromosome predicts the likelihood
that a given chromosome is preferentially gained or lost
in tumors [86], shedding light on the forces shaping
karyotype complexity in cancer.
Thus, the above findings suggest that aneuploidy is

capable of promoting tumor progression by allowing dir-
ect acquisition of cancer-promoting mutations. However,
it is unclear whether aneuploidy alone is sufficient to ini-
tiate tumorigenesis. Individuals with constitutional aneu-
ploidies, especially those with Down Syndrome (DS),
may give us some clues [87]. DS patients have an elevated
risk of childhood leukemia including acute lymphoblastic
leukemia (ALL) and acute megakaryoblastic leukemia
(AMKL) [88]. Moreover, trisomy 21 is the most common
cytogenetic abnormality in non-DS ALL patients [89] and
is significantly present in pediatric AMKL [90]. Chromo-
some 21 harbors two leukemia-related hematopoietic
transcription factors, ETS2 and ERG, and it has been
shown that extra copies of these two genes induce mega-
karyopoiesis and may have direct roles in promoting
AMKL in DS patients [91, 92]. On top of protein-coding
genes, microRNAs encoded by aneuploid chromosomes
can also result in widespread changes in gene expression
[93]. For example, miR-125b-2 found on chromosome 21
has been implicated in the pathogenesis of trisomy 21-
associated AMKL via its role in enhancing proliferation of
progenitor cells [94].
At the same time, DS patients were found to have a

lower incidence of solid tumors when compared to
aged-matched healthy individuals [88, 95]. This protect-
ive effect has also been recapitulated in mouse models of
DS [96, 97]. Part of the tumor-protective effect has been
attributed to the gain of a third copy of the Down syn-
drome critical region-1 (Dscr1) gene, a calcineurin inhibi-
tor that acts as a suppressor of VEGF-mediated angiogenic
signaling [98]. Accordingly, a single extra copy of Dscr1
was enough to suppress tumor vascularization and in-
crease apoptosis of lung tumor cells in a mouse model for
trisomy 21 [99]. These examples clearly illustrate the multi-
tude of effects, both oncogenic and tumor suppressive,
exerted by the presence of extra chromosomes. This dual
outcome might result from the fact that aneuploidy alters
expression of many genes at the same time, some of which
could promote tumor onset or progression while others
could perform inhibitory roles. We thus predict that the
final outcome on tumor progression caused by an extra
chromosome depends on the net effect of all gene expres-
sion changes and how these complex changes interact with
the tumor microenvironment or the tumor’s specific
growth needs (discussed below, Fig. 2).
Besides trisomy 21, humans with other constitutive an-

euploidies are also prone to cancer development (reviewed
by [87]). It must be noted that it is difficult to determine
cancer incidence for many of these patients due to early
death. However, it has been shown that Edward’s syn-
drome patients (trisomy 18) have increased incidence of
Wilm’s tumor and hepatoblastomas, while rare individuals
with constitutional trisomy 8 have high risk of myeloid
neoplasms (reviewed by [87]). Additionally, Turner syn-
drome patients (X monosomy) showed an increased risk
of CNS tumors, ocular cancer, gonadoblastoma and blad-
der and urethral cancers, while their risk for breast can-
cer was instead found to be reduced [100]. Men with
Klinefelter syndrome (extra X) were found to have in-
creased incidence of certain cancers including that of the
lung, breast and lymphoid cells, while there was a de-
creased risk of prostate cancer [101].

Aneuploidy: a novel path toward genomic
instability?
Is the effect of aneuploidy on tumorigenesis solely
dependent on the direct effects on gene expression or
could aneuploidy exert other effects on the cellular
phenotype? Is it conceivable that having an abnormal
chromosome content may result in increased genomic
instability [60, 66]? Sheltzer et al. showed that aneu-
ploid budding yeast strains increased genetic and karyo-
typic instability [102]. Indeed while some of them had
reduced capacity of transmitting an artificially introduced



Giam and Rancati Cell Division  (2015) 10:3 Page 7 of 12
chromosome as well as defects in mitotic recombination,
other aneuploid yeast strains exhibited increased DNA
double-stranded breaks, possibly due to defects in DNA
replication [102]. A recent study also showed that aneu-
ploid budding yeast strains enter into mitosis in presence
of unrepaired DNA, possibly leading to accumulation of
chromosomal translocations [103]. Increased CIN was also
found in some aneuploid yeast strains generated by sporu-
lation of triploid or pentaploid yeast [71, 104]. Together
these studies show that cells harboring different karyo-
types are endowed with different degrees of CIN possibly
depending on the identity of the genes encoded on the un-
balanced chromosomes (Fig. 1).
Mammalian aneuploid cell lines have been generated

using either microcell-mediated chromosome transfer or
drug-induced chromosome missegregation [76, 105–108].
However, due to technical challenges in generating cell
lines containing specific chromosomes in aneuploidy,
analysis of genomic instability has only been performed
on a few aneuploid karyotypes. While HE35 cells triso-
mic for chromosome 8 showed a slight increase in
structural chromosomal aberrations [76], human renal
carcinoma cells with extra chromosome 3 displayed un-
balanced chromosomal translocations due to asynchron-
ous and incomplete DNA replication [105], suggesting
that aneuploidy could cause genetic instability also in hu-
man cells. Aneuploidy has also been shown to increase
chromosome missegregation [109]. Indeed, increased
sporadic gains or losses of chromosomes were observed in
phytohemagglutinin (PHA)-stimulated lymphocytes of
humans with constitutive aneuploidies (trisomic 13, 18, 21
and monosomic X patients) [110, 111], suggesting that an-
euploidy increases CIN. However, the fact that different
aneuploid cell lines cultured in vitro maintained a rela-
tively stable karyotype [106, 107], suggests that not all an-
euploid karyotypes induce CIN. Supporting this view,
aneuploid primary cell lines generated from aborted fe-
tuses did not show an increase in CIN when assayed by
FISH [112] and trisomic 8 HE35 cells did not show an
increase in micronuclei formation [76], a hallmark of
chromosome segregation defects. The discrepancies be-
tween these studies could be attributed to differences
in cell types, specific karyotypic effects or sensitivity of
assays used to measure CIN (particularly FISH vs. meta-
phase spreading). It is however tempting to speculate that
the aneuploidy-induced genome instability could at least
partially account for the increased cancer risk observed in
constitutive aneuploid patients [87].
We are only now starting to understand the molecular

mechanisms that underlie the increased rate of chromo-
some missegregation and formation of DNA damage in
aneuploid cells [60, 66]. Genome stability relies on the
activity of several protein complexes involved in tightly
regulated processes such as chromosome alignment and
DNA replication. Alteration of the stoichiometry between
different subunits of such complexes could alter their
activity and lead to genome instability. Indeed, mice carry-
ing heterozygous mutations in the SAC components are
prone to chromosome missegregation and accumulation
of aneuploid cells (reviewed in [37]). In both budding yeast
and mammalian cells, aneuploidy has been shown to in-
duce mRNA and protein changes that are on average pro-
portional with chromosome copy number changes [71, 75,
106, 107, 113]. Therefore, when aneuploidy strikes it could
lead to changes in the protein stoichiometry of complexes
required for genome maintenance. Supporting this hy-
pothesis, it has been shown in budding yeast that copy
number imbalances between chromosome VII and X re-
sulted in changes in the ratio of MAD1 and MAD2
mRNA, leading to increased CIN [104], possibly due to al-
tered SAC functionality. Under this perspective, by bring-
ing about specific expression changes, different karyotypes
would thus have varying effects on CIN and GIN. Accord-
ingly, a variety of CIN and genetic instability levels were
reported for different collections of aneuploid yeast strains
carrying different aneuploid chromosomes [102, 104, 71].
Another hypothesis that could explain the increased GIN
observed in aneuploid cells is that the presence of an extra
chromosome challenges the DNA replication or chromo-
some segregation capacity of the cells. However, Sheltzer
et al. did not observe increased GIN in budding yeast car-
rying exogenous artificial chromosomes [102], suggesting
that genome instability is not brought about by the mere
presence of extra DNA but instead is the result of imbal-
ances in specific gene products.
Recent observations link chromosome missegregation

with the generation of DNA damage (Fig. 1) [108, 114,
115]. Janssen et al. recently showed that lagging chro-
mosomes trapped in the spindle midzone are prone to
damage by the cleavage furrow during cytokinesis, linking
chromosome missegregation to DNA damage, chromo-
some breaks and translocations [115]. However, other
studies have not found significant signs of DNA damage
in merotelically attached lagging chromosomes [114, 116].
Instead, Crasta et al. reported that missegregated chromo-
somes which become encapsulated in micronuclei are vul-
nerable to DNA damage and extensive DNA pulverization
due to defects in DNA replication [114]. Since chromo-
somes in micronuclei are also capable of undergoing
normal condensation and successfully rejoin the other
chromosomes in the next mitosis [114], any DNA damage
generated in the micronuclei can potentially be inher-
ited by the daughter cells. An indirect mechanism link-
ing chromosome missegregation and CIN could be that
the presence of lagging chromosomes in the spindle
midzone has been reported to lead to cytokinesis failure,
cleavage furrow regression and formation of binucleated
tetraploid cells [117, 118]. In turn, tetraploid cells are
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known to form multipolar spindles and to undergo cha-
otic mitoses leading to CIN [119, 120]. Therefore, not
only the state of aneuploidy but also the act of becom-
ing aneuploid (i.e. chromosome missegregation) could
directly or indirectly increase genome instability (Fig. 1).
To close the loop, it has been recently shown that acti-
vating the DNA damage response during mitosis by
DNA-damaging drugs or ionizing radiation resulted in in-
creased chromosome missegregation through stabilization
of kinetochore-microtubule interactions by Aurora A and
PLK1 kinases [121]. It is possible that the DNA damage
generated by aneuploidy could result in increased CIN
and further DNA damage, which would subsequently gen-
erate more aneuploidy, leading to a snowballing effect to-
wards chromosomal chaos and GIN (Fig. 1).

Aneuploidy, CIN and tumorigenesis: more
complex than a ménage a trois
As discussed above, some cancer hallmarks could be ac-
quired by the phenotypic variation brought about by
gaining or losing specific chromosomes or by the GIN
that is associated with aneuploidy or chromosome mis-
segregation. It follows that aneuploidy and CIN should
act as drivers of cellular transformation. However, the
relationship between aneuploidy, CIN and tumorigenesis
is not straightforward (Fig. 2). While some CIN mouse
models develop spontaneous tumors, others do not or
even have decreased incidence when challenged with car-
cinogens or combined with tumor-prone backgrounds
(Table 1). Indeed, Silk et al. showed that exacerbating
the level of CIN in CENP-E+/− mice by crossing them
to Mad2+/− or p19ARF−/− mice or by treating them with
the chemical carcinogen DMBA resulted in enhanced cell
death and reduced tumor incidence [59]. Moreover, while
BubR1+/−ApcMin/+ compound mutant mice had drastically
increased numbers of colonic tumors they show a reduc-
tion of small intestinal polyps compared to ApcMin/+ mice
[122]. Similarly, Pttg+/− (Securin) mice have decreased pi-
tuitary tumor incidence in the Rb+/− background [123].
Collectively, these observations suggest that a moderately
elevated rate of CIN could potentially allow transform-
ation while too much or too little CIN would have no ef-
fect or even inhibit the carcinogenesis process [59, 124].
In agreement with this hypothesis, while poor life ex-
pectancy has been linked to moderate levels of CIN,
high CIN level in cancer cells was associated with bet-
ter prognosis [15].
How can we explain these observations? While too lit-

tle CIN would not provide a large enough karyotypic
variation thereby limiting the possibility of cells to ac-
quire cancer hallmarks, too much CIN could lead to an
excessive burden of detrimental mutations and possibly
to the rapid loss of beneficial mutations after their ac-
quisition [62]. A moderate CIN instead would allow a
population of cancer cells to acquire standing genetic
variation, allowing it to adapt towards challenging or
fluctuating environments such as presence of chemothera-
peutic compounds. Another possibility is that eukaryotic
cells from multicellular organisms have acquired surveil-
lance mechanisms that actively prevent the propagation of
highly aneuploid cells. In this case, while too much CIN
could activate these protection mechanisms and target the
cell to death or arrest, a moderate level of CIN might
allow aberrant cells to fly under the radar and to keep
proliferating. Accordingly, the tumor suppressor p53 is
upregulated upon aneuploidization and has been shown
to limit the proliferation of aneuploid cells in culture
[116, 125]. Moreover, reducing the levels of p53 in
SAC-deficient mice showed increased T cell lymphoma
and decreased survival [125–128], suggesting that p53
could limit the tumorigenesis potential of CIN in vivo
by restraining the viability of aneuploid cells (summarized
in Table 1). In agreement, thymic apoptosis observed in
Cdc20+/AAA mice, presumably triggered by presence of
aneuploid cells, was completely rescued upon depletion
of p53 [125]. In Drosophila, CIN induced by SAC mu-
tations was also shown to induce apoptosis that was in-
dependent of Dp53 but was abrogated by inhibition of
the c-Jun N-terminal kinase (JNK) [129]. This observa-
tion suggests that stress pathways could also play a role
in restricting the viability of aneuploid cells and is in
accordance with the evidence that the stress kinase p38
has also been shown to control the proliferation of hu-
man aneuploid cells [116].
What signals might activate p53 or p38 in aneuploid or

CIN cells? The DNA damage generated upon chromo-
some missegregation or aneuploidy (discussed above)
might represent one such signal sensed by p53. Further-
more, CIN cells in Cdc20+/AAA mutant mice showed in-
creased reactive oxygen species (ROS) production, leading
to oxidative DNA damage and subsequent activation of
DNA damage response kinase ATM and p53 [125]. Re-
gardless of the precise molecular details, it is tempting to
speculate that depleting p53/p38 levels releases a prolifera-
tive block in aneuploid cells. Since aneuploidy itself could
start a vicious cycle leading to CIN and GIN (Fig. 1), abro-
gation of the aneuploid proliferative block could lead to
accumulation of even more genomic aberrations fostering
cancer evolution. Indeed some mouse models of CIN
showed increased or accelerated spontaneous tumor onset
when combined with p53 mutations (Table 1). Logically, if
p53 was involved in restraining the tumorigenic potential
of CIN cells, p53 mutations should precede the appear-
ance of CIN in some tumors. Accordingly, during the neo-
plastic progression of Barrett’s esophagus, p53 loss via
chromosome 17p deletion arises before development of
aneuploidy [130]. However, in many other cancers such as
colorectal carcinoma, CIN is observed as an early event
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while p53 inactivation occurs much later in tumor pro-
gression [19]. Additionally, many aneuploid or CIN cancer
cells still express wild-type p53 (http://cancer.sanger.ac.uk/
cancergenome/projects/cell_lines) [131]. Indeed, the fact
that cells derived from humans with aneuploid conditions
or from some organs of healthy individuals [132, 133] can
survive in the presence of wild-type p53, could suggest ei-
ther that aneuploid cells cannot trigger a p53 response at
all or that other still unknown mechanisms may take part
in restraining the growth of aneuploid cells. Therefore,
while a few studies have started to shed some light on the
root of the proliferative block of mammalian aneuploid
cells, we are still missing a mechanistic and comprehensive
description of the signaling pathways and players that link
aneuploidy and CIN to impaired proliferation in multicel-
lular eukaryotic cells.
In summary, we hypothesize that the net tumorigenic

capacity of each aneuploid karyotype is a complex sum
of various factors including the levels of CIN and GIN
induced by the specific chromosomal imbalance, presence
of oncogenes and tumor suppressor genes on the gained or
lost chromosomes, functionality of aneuploidy-suppressive
mechanisms and detrimental effects and level of stress en-
countered by the cell due to its karyotypic abnormalities
(Fig. 2). In a simplistic view of a weighing scale, if the costs
outweigh the benefits endowed by the cell’s karyotype,
tumor suppression will be the end result. However, if ad-
vantages conferred by the change in chromosome copy
number are capable of overcoming the fitness tradeoffs
exerted by aneuploidy, cancer formation may then be
promoted.

Future directions
In this review, we summarized current literature provid-
ing evidence that CIN and aneuploidy could promote
cancer evolution and discussed possible direct and indir-
ect mechanisms underlying this phenomenon. Lastly, we
highlighted the complexity of this ménage à trois, pro-
viding possible explanations on why aneuploidy, CIN,
GIN and cancer do not have a linear relationship (Fig. 1)
and what could limit the tumorigenic capacity of aneu-
ploid cells (Fig. 2). In the future, given its potential role
in promoting tumorigenesis, it will be fundamental to
characterize the interplay between aneuploidy and GIN
in mammalian cells. Does aneuploidy increase the rate
of DNA damage and chromosome missegregation? And
if so, what are the molecular mechanisms underlying
such phenomenon? Is it the presence of specific chro-
mosomes or it is due to lack of scaling of structures re-
quired for genome stability? Moreover, what does limit
the proliferation of some aneuploid mammalian cells?
Does p53 work alone or are there other players? What
are the cellular signals sensed by such mechanisms?
Answers to these questions are likely to lead to novel
strategies to treat cancer and to curb its evolution to-
wards more aggressive and drug-resistant phenotypes.
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