100 research outputs found

    Meso-Cenozoic tectonics of the Central Kyrgyz Tien Shan (Central Asia), based on apatite fission track thermochronology.

    Get PDF
    Apatite fission track thermochronology on the Kyrgyz Tien Shan basement revealed a polyphased thermal history of the study-area. We interpret the Mesozoic and Cenozoic cooling-events as periods of tectonic reactivation

    Exhuming the Meso-Cenozoic Kyrgyz Tianshan and Siberian Altai-Sayan : a review based on low-temperature thermochronology

    Get PDF
    Thermochronological datasets for the Kyrgyz Tianshan and Siberian Altai-Sayan within Central Asia reveal a punctuated exhumation history during the Meso-Cenozoic. In this paper, the datasets for both regions are collectively reviewed in order to speculate on the links between the Meso-Cenozoic exhumation of the continental Eurasian interior and the prevailing tectonic processes at the plate margins. Whereas most of the thermochronological data across both regions document late Jurassic-Cretaceous regional basement cooling, older landscape relics and dissecting fault zones throughout both regions preserve Triassic and Cenozoic events of rapid cooling, respectively. Triassic cooling is thought to reflect the Qiangtang-Eurasia collision and/or rifting/subsidence in the West Siberian basin. Alternatively, this cooling signal could be related with the terminal terrane-amalgamation of the Central Asian Orogenic Belt. For the Kygyz Tianshan, late Jurassic-Cretaceous regional exhumation and Cenozoic fault reactivations can be linked with specific tectonic events during the closure of the Palaeo-Tethys and Neo-Tethys Oceans, respectively. The effect of the progressive consumption of these oceans and the associated collisions of Cimmeria and India with Eurasia probably only had a minor effect on the exhumation of the Siberian Altai-Sayan. More likely, tectonic forces from the east (present-day coordinates) as a result of the building and collapse of the Mongol-Okhotsk orogen and rifting in the Baikal region shaped the current Siberian Altai-Sayan topography. Although many of these hypothesised links need to be tested further, they allow a first-order insight into the dynamic response and the stress propagation pathways from the Eurasian margin into the continental interior

    The tectonic evolution of the Chuya-Kurai zone (Siberian Altai mountains) by means of multi-method chronology

    Get PDF
    The Phanerozoic tectonic evolution of the Chuya-Kurai zone was studied by means of zircon U/Pb-dating, apatite fission track (AFT) and apatite (U-Th)/He (AHe) thermochronology performed on basement rocks. Our results suggest that multiple magmatic episodes during the Paleozoic, related to the accretion-collision tectonics in Central Asia, affected our study area. Mesozoic and Cenozoic basement cooling events are interpreted as periods of tectonic reactivation. A new tectonic model for Late Cenozoic evolution of the Chuya-Kurai zone is proposed

    Late-Paleozoic emplacement and Meso-Cenozoic reactivation of the southern Kazakhstan granitoid basement

    Get PDF
    International audienceThe Ili-Balkhash Basin in southeastern Kazakhstan is located at the junction of the actively deforming mountain ranges of western Junggar and the Tien Shan, and is therefore part of the southwestern Central Asian Orogenic Belt. The basement of the Ili-Balkhash area consists of an assemblage of mainly Precambrian microcontinental fragments, magmatic arcs and accretionary complexes. Eight magmatic basement samples (granitoids and tuffs) from the Ili-Balkhash area were dated with zircon U-Pb LA-ICP-MS and yield Carboniferous to late Permian (~ 350-260 Ma) crystallization ages. These ages are interpreted as reflecting the transition from subduction to (post-) collisional magmatism, related to the closure of the Junggar-Balkhash Ocean during the Carboniferous – early Permian and hence, to the final late Paleozoic accretion history of the ancestral Central Asian Orogenic Belt. Apatite fission track (AFT) dating of 14 basement samples (gneiss, granitoids and volcanic tuffs) mainly provides Cretaceous cooling ages. Thermal history modeling based on the AFT data reveals that several intracontinental tectonic reactivation episodes affected the studied basement during the late Mesozoic and Cenozoic. Late Mesozoic reactivation and associated basement exhumation is interpreted as distant effects of the Cimmerian collisions at the southern Eurasian margin and possibly of the Mongol-Okhotsk Orogeny in SE Siberia during the Jurassic – Cretaceous. Following tectonic stability during the Palaeogene, inherited basement structures were reactivated during the Neogene (constrained by Miocene AFT ages of ~ 17–10 Ma). This late Cenozoic reactivation is interpreted as the far-field response of the India-Eurasia collision and reflects the onset of modern mountain building and denudation in southeast Kazakhstan, which seems to be at least partially controlled by the inherited basement architecture
    • …
    corecore