458 research outputs found
Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures
The oxidation of the Pd(100) surface at oxygen pressures in the 10^-6 to 10^3
mbar range and temperatures up to 1000 K has been studied in-situ by surface
x-ray diffraction (SXRD). The results provide direct structural information on
the phases present in the surface region and on the kinetics of the oxide
formation. Depending on the (T,p) environmental conditions we either observe a
thin sqrt(5) x sqrt(5) R27 surface oxide or the growth of a rough, poorly
ordered bulk oxide film of PdO predominantly with (001) orientation. By either
comparison to the surface phase diagram from first-principles atomistic
thermodynamics or by explicit time-resolved measurements we identify a strong
kinetic hindrance to the bulk oxide formation even at temperatures as high as
675 K.Comment: 4 pages including 4 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Reorientation of Spin Density Waves in Cr(001) Films induced by Fe(001) Cap Layers
Proximity effects of 20 \AA thin Fe layers on the spin density waves (SDWs)
in epitaxial Cr(001) films are revealed by neutron scattering. Unlike in bulk
Cr we observe a SDW with its wave vector Q pointing along only one {100}
direction which depends dramatically on the film thickness t_{Cr}. For t_{Cr} <
250 \AA the SDW propagates out-of-plane with the spins in the film plane. For
t_{Cr} > 1000 \AA the SDW propagates in the film plane with the spins
out-of-plane perpendicular to the in-plane Fe moments. This reorientation
transition is explained by frustration effects in the antiferromagnetic
interaction between Fe and Cr across the Fe/Cr interface due to steps at the
interface.Comment: 4 pages (RevTeX), 3 figures (EPS
Single Alloy Nanoparticle X-Ray Imaging during a Catalytic Reaction
The imaging of active nanoparticles represents a milestone in decoding
heterogeneous catalysts dynamics. We report the facet resolved, surface strain
state of a single PtRh alloy nanoparticle on SrTiO3 determined by coherent
x-ray diffraction imaging under catalytic reaction conditions. Density
functional theory calculations allow us to correlate the facet surface strain
state to its reaction environment dependent chemical composition. We find that
the initially Pt terminated nanoparticle surface gets Rh enriched under CO
oxidation reaction conditions. The local composition is facet orientation
dependent and the Rh enrichment is non-reversible under subsequent CO
reduction. Tracking facet resolved strain and composition under operando
conditions is crucial for a rational design of more efficient heterogeneous
catalysts with tailored activity, selectivity and lifetime.Comment: 15 pages, 4 figures, 32 reference
Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena
Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres
Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.112926Ysciescopu
Interplay of pulse duration, peak intensity, and particle size in laser-driven electron emission from silica nanospheres
We present the results of a systematic study of photoelectron emission from
gasphase dielectric nanoparticles (SiO2) irradiated by intense 25 fs, 780 nm
linearly polarized laser pulses as a function of particle size (20 nm to 750 nm
in diameter) and laser intensity. We also introduce an experimental technique
to reduce the effects of focal volume averaging. The highest photoelectron
energies show a strong size dependence, increasing by a factor of six over the
range of particles sizes studied at a fixed intensity. For smaller particle
sizes (up to 200 nm), our findings agree well with earlier results obtained
with few-cycle, ~4 fs pulses. For large nanoparticles, which exhibit stronger
near-field localization due to field-propagation effects, we observe the
emission of much more energetic electrons, reaching energies up to ~200 times
the ponderomotive energy. This strong deviation in maximum photoelectron energy
is attributed to the increase in ionization and charge interaction for
many-cycle pulses at similar intensities.Comment: 14 pages, 5 figure
Ozone, DNA-active UV radiation, and cloud changes for the near-global mean and at high latitudes due to enhanced greenhouse gas concentrations
This study analyses the variability and trends of ultraviolet-B (UV-B, wavelength 280–320 nm) radiation that can cause DNA damage. The variability and trends caused by climate change due to enhanced greenhouse gas (GHG) concentrations. The analysis is based on DNA-active irradiance, total ozone, total cloud cover, and surface albedo calculations with the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) chemistry–climate model (CCM) free-running simulations following the RCP 6.0 climate scenario for the period 1960–2100. The model output is evaluated with DNA-active irradiance ground-based measurements, satellite SBUV (v8.7) total-ozone measurements, and satellite MODerate-resolution Imaging Spectroradiometer (MODIS) Terra cloud cover data. The results show that the model reproduces the observed variability and change in total ozone, DNA-active irradiance, and cloud cover for the period 2000–2018 quite well according to the statistical comparisons. Between 50∘ N–50∘ S, the DNA-damaging UV radiation is expected to decrease until 2050 and to increase thereafter, as was shown previously by Eleftheratos et al. (2020). This change is associated with decreases in the model total cloud cover and negative trends in total ozone after about 2050 due to increasing GHGs. The new study confirms the previous work by adding more stations over low latitudes and mid-latitudes (13 instead of 5 stations). In addition, we include estimates from high-latitude stations with long-term measurements of UV irradiance (three stations in the northern high latitudes and four stations in the southern high latitudes greater than 55∘). In contrast to the predictions for 50∘ N–50∘ S, it is shown that DNA-active irradiance will continue to decrease after the year 2050 over high latitudes because of upward ozone trends. At latitudes poleward of 55∘ N, we estimate that DNA-active irradiance will decrease by 8.2 %±3.8 % from 2050 to 2100. Similarly, at latitudes poleward of 55∘ S, DNA-active irradiance will decrease by 4.8 % ± 2.9 % after 2050. The results for the high latitudes refer to the summer period and not to the seasons when ozone depletion occurs, i.e. in late winter and spring. The contributions of ozone, cloud, and albedo trends to the DNA-active irradiance trends are estimated and discussed.</p
- …