488 research outputs found
Eight-band calculations of strained InAs/GaAs quantum dots compared with one, four, and six-band approximations
The electronic structure of pyramidal shaped InAs/GaAs quantum dots is
calculated using an eight-band strain dependent Hamiltonian. The
influence of strain on band energies and the conduction-band effective mass are
examined. Single particle bound-state energies and exciton binding energies are
computed as functions of island size. The eight-band results are compared with
those for one, four and six bands, and with results from a one-band
approximation in which m(r) is determined by the local value of the strain. The
eight-band model predicts a lower ground state energy and a larger number of
excited states than the other approximations.Comment: 8 pages, 7 figures, revtex, eps
Tight-Binding model for semiconductor nanostructures
An empirical tight-binding (TB) model is applied to the
investigation of electronic states in semiconductor quantum dots. A basis set
of three -orbitals at the anions and one -orbital at the cations is
chosen. Matrix elements up to the second nearest neighbors and the spin-orbit
coupling are included in our TB-model. The parametrization is chosen so that
the effective masses, the spin-orbit-splitting and the gap energy of the bulk
CdSe and ZnSe are reproduced. Within this reduced TB-basis the
valence (p-) bands are excellently reproduced and the conduction (s-) band is
well reproduced close to the -point, i.e. near to the band gap. In
terms of this model much larger systems can be described than within a (more
realistic) -basis. The quantum dot is modelled by using the (bulk)
TB-parameters for the particular material at those sites occupied by atoms of
this material. Within this TB-model we study pyramidal-shaped CdSe quantum dots
embedded in a ZnSe matrix and free spherical CdSe quantum dots (nanocrystals).
Strain-effects are included by using an appropriate model strain field. Within
the TB-model, the strain-effects can be artifically switched off to investigate
the infuence of strain on the bound electronic states and, in particular, their
spatial orientation. The theoretical results for spherical nanocrystals are
compared with data from tunneling spectroscopy and optical experiments.
Furthermore the influence of the spin-orbit coupling is investigated
Anomalous quantum confined Stark effects in stacked InAs/GaAs self-assembled quantum dots
Vertically stacked and coupled InAs/GaAs self-assembled quantum dots (SADs)
are predicted to exhibit a strong non-parabolic dependence of the interband
transition energy on the electric field, which is not encountered in single SAD
structures nor in other types of quantum structures. Our study based on an
eight-band strain-dependent Hamiltonian indicates that
this anomalous quantum confined Stark effect is caused by the three-dimensional
strain field distribution which influences drastically the hole states in the
stacked SAD structures.Comment: 4 pages, 4 figure
Single and vertically coupled type II quantum dots in a perpendicular magnetic field: exciton groundstate properties
The properties of an exciton in a type II quantum dot are studied under the
influence of a perpendicular applied magnetic field. The dot is modelled by a
quantum disk with radius , thickness and the electron is confined in the
disk, whereas the hole is located in the barrier. The exciton energy and
wavefunctions are calculated using a Hartree-Fock mesh method. We distinguish
two different regimes, namely (the hole is located at the radial
boundary of the disk) and (the hole is located above and below the
disk), for which angular momentum transitions are predicted with
increasing magnetic field. We also considered a system of two vertically
coupled dots where now an extra parameter is introduced, namely the interdot
distance . For each and for a sufficient large magnetic field,
the ground state becomes spontaneous symmetry broken in which the electron and
the hole move towards one of the dots. This transition is induced by the
Coulomb interaction and leads to a magnetic field induced dipole moment. No
such symmetry broken ground states are found for a single dot (and for three
vertically coupled symmetric quantum disks). For a system of two vertically
coupled truncated cones, which is asymmetric from the start, we still find
angular momentum transitions. For a symmetric system of three vertically
coupled quantum disks, the system resembles for small the pillar-like
regime of a single dot, where the hole tends to stay at the radial boundary,
which induces angular momentum transitions with increasing magnetic field. For
larger the hole can sit between the disks and the state
remains the groundstate for the whole -region.Comment: 11 pages, 16 figure
One Hundred Years of Observations of the Be Star HDE 245770 (the X-ray Binary A0535+26/V725 Tau): The End of an Active Phase
UBV observations of the X-ray binary system A0535+26/V725 Tau at the Crimean
Station of the Sternberg Astronomical Institute in 1980-1998 are presented.
Based on our and published data, we analyze the photometric history of the star
from 1898.Comment: Translated from Pis'ma Astronomicheskii Zhurnal, Vol. 26, No. 1,
2000, pp. 13-2
Center-of-Mass Properties of the Exciton in Quantum Wells
We present high-quality numerical calculations of the exciton center-of-mass
dispersion for GaAs/AlGaAs quantum wells of widths in the range 2-20 nm. The
k.p-coupling of the heavy- and light-hole bands is fully taken into account. An
optimized center-of-mass transformation enhances numerical convergence. We
derive an easy-to-use semi-analytical expression for the exciton groundstate
mass from an ansatz for the exciton wavefunction at finite momentum. It is
checked against the numerical results and found to give very good results. We
also show multiband calculations of the exciton groundstate dispersion using a
finite-differences scheme in real space, which can be applied to rather general
heterostructures.Comment: 19 pages, 12 figures included, to be published in Phys. Rev.
Tuning strategy for Curie-temperature enhancement in the van der Waals magnet Mn<sub>1+x</sub>Sb<sub>2âx</sub>Te<sub>4</sub>
The van-der-Waals antiferromagnetic topological insulator MnBi2Te4 is one of the few materials that realize the sought-after quantum anomalous Hall (QAH) state and quantized surface charge transport. To assess the relevance of its isostructural analog MnSb2Te4 as a potential QAH candidate, the roles of Mn/Sb site mixing and cationic vacancies need to be clarified. Recent findings have shown that non-stoichiometry in Mn1±xSb2âxTe4 is an efficient tuning knob to achieve a net spin-polarized state and to raise the magnetic ordering temperature well above that of MnBi2Te4. Here, we report the crystal structure, the bulk and the surface magnetism of two new Mn1+xSb2âxTe4 samples: Mn1.08Sb1.92Te4(x â 0.1) with TC = 44 K, and Mn2.01Sb1.19Te4(x â 1.0) with the record TC = 58 K. We quantify the site mixing comprehensively by combining various structural probes on powders and single crystals, and then employ bulk, local (electron spin resonance), and spectroscopic (x-ray magnetic circular dichroism) probes to connect these insights to the magnetism of these materials. We demonstrate that Mn over-stoichiometry up to x = 1.0, in combination with a particular Mn/Sb intermixing pattern and the increasingly three-dimensional character of the magnetic order, push the TC upwards. The tendency towards more robust ferromagnetism mediated by stronger interlayer exchange in Mn1+xSb2âxTe4 upon increasing x is confirmed by bulk magnetometry and by a series of density-functional-theory calculations of model structures with varying intermixing.</p
Effect of molecular and electronic structure on the light harvesting properties of dye sensitizers
The systematic trends in structural and electronic properties of perylene
diimide (PDI) derived dye molecules have been investigated by DFT calculations
based on projector augmented wave (PAW) method including gradient corrected
exchange-correlation effects. TDDFT calculations have been performed to study
the visible absorbance activity of these complexes. The effect of different
ligands and halogen atoms attached to PDI were studied to characterize the
light harvesting properties. The atomic size and electronegativity of the
halogen were observed to alter the relaxed molecular geometries which in turn
influenced the electronic behavior of the dye molecules. Ground state molecular
structure of isolated dye molecules studied in this work depends on both the
halogen atom and the carboxylic acid groups. DFT calculations revealed that the
carboxylic acid ligands did not play an important role in changing the
HOMO-LUMO gap of the sensitizer. However, they serve as anchor between the PDI
and substrate titania surface of the solar cell or photocatalyst. A
commercially available dye-sensitizer, ruthenium bipyridine (RuBpy), was also
studied for electronic and structural properties in order to make a comparison
with PDI derivatives for light harvesting properties. Results of this work
suggest that fluorinated, chlorinated, brominated, and iyodinated PDI compounds
can be useful as sensitizers in solar cells and in artificial photosynthesis.Comment: Single pdf file, 14 pages with 7 figures and 4 table
Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study
Simulated multi-model âdiversityâ in aerosol direct
radiative forcing estimates is often perceived as a measure
of aerosol uncertainty. However, current models used
for aerosol radiative forcing calculations vary considerably
in model components relevant for forcing calculations and
the associated âhost-model uncertaintiesâ are generally convoluted
with the actual aerosol uncertainty. In this AeroCom
Prescribed intercomparison study we systematically isolate
and quantify host model uncertainties on aerosol forcing experiments
through prescription of identical aerosol radiative
properties in twelve participating models.
Even with prescribed aerosol radiative properties, simulated
clear-sky and all-sky aerosol radiative forcings show
significant diversity. For a purely scattering case with globally
constant optical depth of 0.2, the global-mean all-sky
top-of-atmosphere radiative forcing is â4.47Wmâ2 and the
inter-model standard deviation is 0.55Wmâ2, corresponding
to a relative standard deviation of 12 %. For a case
with partially absorbing aerosol with an aerosol optical
depth of 0.2 and single scattering albedo of 0.8, the forcing
changes to 1.04Wmâ2, and the standard deviation increases
to 1.01Wâ2, corresponding to a significant relative standard
deviation of 97 %. However, the top-of-atmosphere forcing
variability owing to absorption (subtracting the scattering
case from the case with scattering and absorption) is low,
with absolute (relative) standard deviations of 0.45Wmâ2
(8 %) clear-sky and 0.62Wmâ2 (11 %) all-sky.
Scaling the forcing standard deviation for a purely scattering
case to match the sulfate radiative forcing in the Aero-
Com Direct Effect experiment demonstrates that host model
uncertainties could explain about 36% of the overall sulfate
forcing diversity of 0.11Wmâ2 in the AeroCom Direct Radiative
Effect experiment
- âŠ