888 research outputs found

    Methods of regularization for computing orbits in celestial mechanics

    Get PDF
    Numerical and analytical methods for orbit computation in celestial mechanics during and beyond collision by introduction of regularized coordinate

    Lecciones aprendidas de experiencias de restauración en el Perú

    Get PDF

    Analytic estimates and topological properties of the weak stability boundary

    Get PDF
    The weak stability boundary (WSB) is the transition region of the phase space where the change from gravitational escape to ballistic capture occurs. Studies on this complicated region of chaotic motion aim to investigate its unique, fuel saving properties to enlarge the frontiers of low energy transfers. This “fuzzy stability” region is characterized by highly sensitive motion, and any analysis of it has been carried out almost exclusively using numerical methods. On the contrary this paper presents, for the planar circular restricted 3 body problem (PCR3BP), 1) an analytic definition of the WSB which is coherent with the known algorithmic definitions; 2) a precise description of the topology of the WSB; 3) analytic estimates on the “stable region” (nearby the smaller primary) whose boundary is, by definition, the WSB

    Autoparallels From a New Action Principle

    Full text link
    We present a simpler and more powerful version of the recently-discovered action principle for the motion of a spinless point particle in spacetimes with curvature and torsion. The surprising feature of the new principle is that an action involving only the metric can produce an equation of motion with a torsion force, thus changing geodesics to autoparallels. This additional torsion force arises from a noncommutativity of variations with parameter derivatives of the paths due to the closure failure of parallelograms in the presence of torsionComment: Paper in src. Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Read paper directly with Netscape under http://www.physik.fu-berlin.de/~kleinert/kleiner_re243/preprint.htm

    Kustaanheimo-Stiefel Regularization and the Quadrupolar Conjugacy

    Get PDF
    In this note, we present the Kustaanheimo-Stiefel regularization in a symplectic and quaternionic fashion. The bilinear relation is associated with the moment map of the S1S^{1}- action of the Kustaanheimo-Stiefel transformation, which yields a concise proof of the symplecticity of the Kustaanheimo-Stiefel transformation symplectically reduced by this circle action. The relation between the Kustaanheimo-Stiefel regularization and the Levi-Civita regularization is established via the investigation of the Levi-Civita planes. A set of Darboux coordinates (which we call Chenciner-F\'ejoz coordinates) is generalized from the planar case to the spatial case. Finally, we obtain a conjugacy relation between the integrable approximating dynamics of the lunar spatial three-body problem and its regularized counterpart, similar to the conjugacy relation between the extended averaged system and the averaged regularized system in the planar case.Comment: 19 pages, corrected versio

    Hydrogen atom in crossed electric and magnetic fields: Phase space topology and torus quantization via periodic orbits

    Get PDF
    A hierarchical ordering is demonstrated for the periodic orbits in a strongly coupled multidimensional Hamiltonian system, namely the hydrogen atom in crossed electric and magnetic fields. It mirrors the hierarchy of broken resonant tori and thereby allows one to characterize the periodic orbits by a set of winding numbers. With this knowledge, we construct the action variables as functions of the frequency ratios and carry out a semiclassical torus quantization. The semiclassical energy levels thus obtained agree well with exact quantum calculations

    Reduced quasifission competition in fusion reactions forming neutron-rich heavy elements

    Get PDF
    Measurements of mass-angle distributions (MADs) for Cr + W reactions, providing a wide range in the neutron-to-proton ratio of the compound system, (N/Z)CN, have allowed for the dependence of quasifission on the (N/Z)CN to be determined in a model-independent way. Previous experimental and theoretical studies had produced conflicting conclusions. The experimental MADs reveal an increase in contact time and mass evolution of the quasifission fragments with increasing (N/Z)CN, which is indicative of an increase in the fusion probability. The experimental results are in agreement with microscopic time-dependent Hartree-Fock calculations of the quasifission process. The experimental and theoretical results favor the use of the most neutron-rich projectiles and targets for the production of heavy and superheavy nuclei.Comment: Accepted to PRC as a Rapid Communicatio

    Duality properties of Gorringe-Leach equations

    Full text link
    In the category of motions preserving the angular momentum's direction, Gorringe and Leach exhibited two classes of differential equations having elliptical orbits. After enlarging slightly these classes, we show that they are related by a duality correspondence of the Arnold-Vassiliev type. The specific associated conserved quantities (Laplace-Runge-Lenz vector and Fradkin-Jauch-Hill tensor) are then dual reflections one of the othe
    corecore