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Analytic estimates and topological properties of the weak
stability boundary

Marta Ceccaroni · James Biggs · Luca

Biasco

Abstract The weak stability boundary (WSB) is the transition region of the phase

space where the change from gravitational escape to ballistic capture occurs. Studies

on this complicated region of chaotic motion aim to investigate its unique, fuel saving

properties to enlarge the frontiers of low energy transfers. This “fuzzy stability” region

is characterized by highly sensitive motion, and any analysis of it has been carried out

almost exclusively using numerical methods.

On the contrary this paper presents, for the planar circular restricted 3 body prob-

lem (PCR3BP), 1) an analytic definition of the WSB which is coherent with the known

algorithmic definitions; 2) a precise description of the topology of the WSB; 3) analytic

estimates on the “stable region” (nearby the smaller primary) whose boundary is, by

definition, the WSB.

Keywords Weak Stability boundary · Restricted Three Body Problem

1 Introduction and main results

In January 1990 Japan’s ISAS Institute launched a pair of small spacecraft linked to-

gether into an elliptic Earth orbit. The smaller one, called MUSES-B, detached and

lost communication connections; it was supposed to go to the Moon and into lunar

orbit using a Hohmann transfer. The larger craft, MUSES-A, still orbiting the Earth

was meant to send and collect communications to and from MUSES-B, and perform
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scientific experiments while in Earth orbit. It was then desired by the ISAS Institute to

try to get MUSES-A to the Moon as a replacement for MUSES-B, and into lunar orbit

with a desired lunar periapsis radius at capture r equal to rMoon +100Km. MUSES-A

had a very small ∆V capability of approximately 100 meters per second (m/s), far less

than what is necessary to be placed into lunar orbit using an Hohmann transfer as it

was never designed to go to the Moon. A solution was found by Belbruno and Miller

(1993) at the Jet Propulsion Laboratory in June 1990 to enable MUSES-A, renamed

Hiten, to reach the Moon on a ballistic capture transfer to the region W, thus named

lunar Weak Stability Boundary (WSB). This transfer rescued the Japanese lunar mis-

sion; without it, there was not enough∆V to get Hiten to the Moon by any other means.

Since the Hiten mission the low energy interplanetary transfers have been widely

studied (see for example: Belbruno (1987), Belbruno (1990), Belbruno (2004) and Top-

puto (2007)), particularly, arousing the interest in designing lunar trajectories (Koon et

al. (2001), Gómez et al (1993), Romagnoli and Circi (2009) and Mingotti et al. (2009))

and other systems (Topputo and Belbruno, 2009). Many different ways have been pro-

posed for designing them (Belbruno (1987), Carrico and Belbruno (2006), Bello-Mora

et al. (2000), Belbruno (1997), Gómez et al. (2004)). All of these techniques for “ bal-

listic capture transfers” used the WSB. Moreover, this zone has the unique property

that a spacecraft entering it is automatically captured in an elliptical orbit without

needing to reduce its velocity with the use of rockets.

Roughly speaking the WSB is described as “a generalization of the Lagrange points

and a complicated region surrounding the Moon” Belbruno and Miller (1993), “a region

in phase space supporting a special type of chaotic motion for special choices of elliptic

initial conditions with respect to m2” Belbruno (2004), “a transition region between

the gravitational capture and escape from the Moon in the phase space” Topputo et al.

(2008).

More precisely in Belbruno (2004) the author suggested an algorithmic definition of

WSB and presented its geometry for the Earth-Moon system in the planar case, in

terms of eccentricity, periselenium altitude and Jacobi constant of the spacecraft oscu-

lating initial orbit. However Garćıa and Gómez (2007) spotted some lack of accuracy

in the definition given by Belbruno, thus providing a new algorithmic definition which

addressed all the comments on the previous one, and gave numerical evidence that the

shape of the WSB arises from their definition.

1.1 Main results

In this paper, starting from the algorithmic definitions cited above, an analytical defini-

tion of the WSB (see Definition 9) is given for the planar, circular, restricted three-body

problem (PCR3BP). We consider the motions of a massless body (restricted problem)

subject to the gravitational attractions of two massive primaries revolving on planar

circular orbits (circular problem), around their common center of mass. The massless

body is assumed to move in the same plane as the primaries (planar problem). For

simplicity of exposition we will call “Spacecraft”, “Earth” and “Moon”, the massless

body, the larger primary and the smaller primary respectively. However we stress that

our analysis is general and holds for every PCR3BP.

In the rotating reference frame in which the Moon is at the origin and the Earth is
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at rest at distance 1 (see the reference frame F2 on page 6), we consider a half-line

l emanating from the Moon with inclination of an angle θ with respect to the line

joining the Earth and the Moon. Given an eccentricity e ∈ [0, 1] and a distance r > 0

we consider an (r, e, θ)- test orbit (see Definition 4), namely an orbit starting from l

at a distance r from the Moon, with initial velocity such that, the starting point is at

the periselenium (or aposelenium) of the “osculating ellipse” with eccentricity e. The

“osculating ellipse” is defined as the ellipse that the Spacecraft would make neglecting

the influence of the Earth.

Fig. 1 Stable and unstable test-orbits

A (r, e, θ)-test orbit is “stable” (see Definition 5) if it makes a full circle around

the Moon without going around the Earth or crashing into the Earth and returns to

a point of l with HM ≤ 0, where HM is defined as the two-body energy of the system

Spacecraft-Moon (see Definition 1); moreover, following Topputo (2007), we also require

it to come back on l with strictly positive angular velocity (“transversality” condition).

We call S(e, θ) ⊂ R+ (see (16)) the set of r’s such that the (r, e, θ)-test orbit is stable

and satisfies the transversality condition. Then we set W(e, θ) := ∂S(e, θ) and finally

define the WSB as

W :=
{
(r, e, θ) ∈ R+ × [0, 1]× S1 s.t. r ∈ W(e, θ)

}
(see Definition 9).

We note that, thanks to the topological characterization of the WSB (see Proposition

1 below) we are able to show that our analytic definition of WSB and the algorithmic

one given in Garćıa and Gómez (2007) are coherent and give rise to the same picture

for the WSB, see Remark 2.

Using our definition of the WSB, in particular by the transversality condition and

by the fact that the Hamiltonian of the PCR3BP is an analytic function, we are able

to show a precise description of the topology of the set of stable orbits and therefore

of the WSB. Such result is stated in the following proposition which will be proved in

Section 3

Proposition 1 For every (e, θ) ∈ (0, 1) × S1, S(e, θ) is a bounded set formed by at

most a countable disjoint union of open intervals plus at most a countable set of points.

Moreover there exists r∗(e) > 0 such that S(e, θ) ⊃
(
0, r∗(e)

)
.
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Then we study the stable zone S(e, θ), giving an analytic estimate from below on

r∗(e), see Corollary 1.

For low values of the eccentricity good stability estimates can be obtained working

with the usual polar coordinates (see the reference frame F2 on page 6). However, in

view of the applications (i.e. a comparison with the results in Belbruno (2004)), one

is interested in considering eccentricities close to 1. In this case the stability estimates

deteriorate, moreover polar coordinates are not convenient for analytic estimates any-

more. Thus we consider the symplectic Delaunay coordinates and we rewrite the WSB

problem in such coordinates (see Section 4). It results that the Delaunay coordinates

are suitable for analytic estimates in the large eccentricity regime. Indeed we perform

some analytic estimates on the Hamiltonian vector field in Delaunay variables (see

Lemma 2), and we use the assumption that, if the spacecraft starts quite close to the

Moon, then the “mean anomaly” is a so called “fast angle”. Such estimates allow us to

state the Stability Proposition 2, which gives the desired estimate from below on r∗(e)
contained in Corollary 1.

As an example we explicitly evaluate the value of r∗(e) when e = 0.95, which is

the initial eccentricity used by Belbruno in the Hiten mission (see p.145 of Belbruno

(2004)). It results that r∗(0.95) is about 1/7 of Belbruno’s escaping radius considered

for the Hiten’s mission (see Subsection 5.1). In order to test the validity of the analytical

result we also perform a numerical estimation of r∗(0.95) which result to be about 1/3

of Hiten’s escaping ray.

The paper is organized as follows.

In Section 2 we recall the definitions of the WSB given by Belbruno (see Definition

7) and Garćıa and Gómez (2007). (see Definition 8). Then we also propose our analytic

definition (see Definition 9), making some comparison with the other definitions.

The topology of the WSB is studied in Section 3, where Proposition 1 is proved.

A complete description of the WSB problem in Delaunay variables is given in

Section 4.

In Section 5 we prove the Stability Proposition 2, whose immediate consequence is

Corollary 1. Moreover we explicitly evaluate r∗(0.95).

Finally in the Appendix we prove the technical Lemma 2 used in Section 5.

2 Various definitions of the WSB

Three main definitions of Weak Stability Boundaries are introduced in this section.

The first is the algorithmic definition given by Belbruno (see for example Belbruno

(2004)). The second is the modified version given in Garćıa and Gómez (2007) which

provide a second, more complete, definition of the WSB set, although still algorithmic.

Finally the latter is a new, analytic definition of the WSB, followed by a topological

analysis of it and a comparison with the previous definitions, which represents one of

the novelties of this paper.

All these definitions are based on the concept of “ballistic capture” which is also

presented, following the definition in Belbruno (2004) (see Definition 2).

Moreover, as the definition of Ballistic Capture is based on monitoring the sign of Ke-

pler’s energy function of the Moon-Spacecraft system, a definition of such Two Body

Keplerian Energy is also given (see Definition 1), for different reference frames, equiv-
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alent to the one given in Belbruno (2004).

2.1 The Hamiltonian of the PCR3BP

We normalize

M = mass of the Moon , 1−M = mass of the Earth;

Earth−Moon distance = 1 , angular velocity = 1 .

F0) In a fixed inertial frame F0 with the origin in the center of mass of the Moon-

Earth system (recall that the Spacecraft has zero mass) the motions of the Moon and

the Earth are, respectively,

(M − 1)c(t) and Mc(t) where c(t) := (cos(t− π), sin(t− π))

(the Moon and the Earth starting at 1−M,−M for t = 0, respectively).

Denoting by s ∈ R2 the position of the massless body, i.e. the Spacecraft (S), the

equation of motions for the orbit s(t) of S is given by

s̈ = −M s− (M − 1)c(t)

|s− (M − 1)c(t)|3
− (1−M)

s−Mc(t)

|s−Mc(t)|3
.

F1) Let us now pass to a selenocentric (non inertial) frame F1 with the Moon at

the origin and the Earth moving with angular velocity 1 on a unitary circle around the

Moon. Assuming that at the time t = 0 the Earth is in (−1, 0), the orbit of the Earth

is c(t). the new coordinates of S are given by

x = s− (M − 1)c(t) .

Then the equation of motions is

ẍ = s̈+ (M − 1)c(t) = −M x

|x|3
− (1−M)

x− c(t)

|x− c(t)|3
+ (M − 1)c(t) . (1)

Equation (1) is equivalent to the Hamiltonian system

Ẋ = −∂xH1 , ẋ = ∂XH1

with Hamiltonian

H1(X,x; t) :=
|X|2

2
− M

|x| −
1−M

|x− c(t)| + (1−M)c(t) · x , (2)

in the conjugated variables X,x ∈ R2 with symplectic form dX ∧ dx.
Note that X = ẋ is the velocity.

Definition 1 (Two-Body Kepler energy) In the selenocentric frame F1 defined above

with conjugate variables velocity-position (X,x) we define the two-Body Kepler energy

of S with respect to the Moon:

HM (X,x) :=
|X|2

2
− M

|x| . (3)
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Heuristically HM can be seen has the Hamiltonian (in the selenocentric frame) due to

the Moon only, namely when one neglects the influence of the Earth (formally setting

1−M = 0 in H1, see (2)).

Passing to polar coordinates (R,Φ, r, ϕ) by the symplectic transformation

x = r(cosϕ, sinϕ) , X = (R cosϕ− Φ

r
sinϕ,R sinϕ+

Φ

r
cosϕ)

the Hamiltonian H1 in (2) is transformed into

H2(R,Φ, r, ϕ; t) = (4)

1

2

(
R2 +

Φ2

r2

)
− M

r
− 1−M√

r2 + 1− 2r cos(ϕ− t+ π)
+ (1−M)r cos(ϕ− t+ π) .

Moreover

HM (R,Φ, r, ϕ) =
1

2

(
R2 +

Φ2

r2

)
− M

r
. (5)

F2) Let us consider the anti-clockwise rotating frame F2, with angular velocity

1, in which both the Moon and the Earth are at rest; with the Moon at the origin

and the Earth at (−1, 0). Let us denote by (r, ϑ) the polar coordinates in this rotating

frame where θ is the angle measured from the horizontal line joining the Earth and the

Moon. After the time-dependent canonical transformation

ϑ = ϕ− t, Θ = Φ (6)

the Hamiltonian H2 in (4) is transformed into the autonomous Hamiltonian

H3(R,Θ, r, ϑ) = (7)

1

2

(
R2 +

Θ2

r2

)
− M

r
−Θ − 1−M√

r2 + 1− 2r cos(ϑ+ π)
+ (1−M)r cos(ϑ+ π) .

Moreover

HM (R,Θ, r, ϑ) =
1

2

(
R2 +

Θ2

r2

)
− M

r
. (8)

2.2 Belbruno’s definition of WSB

Let us consider a solution ψ(t) of the above Hamiltonians. Note that it is not impor-

tant to specify if we are considering H1, H2 or H3 since they are related by symplectic

changes of variables. Obviously HM must be intended in the same variables of the

corresponding Hamiltonian.

Definition 2 (Ballistic Capture)

Given 0 < t1 < ∞. A Spacecraft is said to be ballistically captured by the Moon in

t = t1 if

HM (ψ(t1)) ≤ 0 . (9)
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Definition 3 (Osculating ellipse) In the selenocentric frame F1 the the osculating

ellipse, is the orbit of the two-body problem Moon-spacecraft (neglecting the Earth)

made by the spacecraft around the Moon, with negative energy. Where the moon is

set in one of the foci of the ellipse. In other words we are considering the motions of

the Hamiltonian HM when the energy is negative.

We recall the relation between the orbital elements of the osculating ellipse (see, e.g.,

Celletti and Chierchia (2007) for details): the eccentricity e, the energy E, the major

semi-axis a, the minimal rmin and maximal rmax distance from the Moon (periselenium

and aposelenium respectively)

E = −M
2a

, rmin = a(1− e) , rmax = a(1 + e) . (10)

Definition 4 ((r0, e0, ϑ0)-Test orbit) In F1 consider radial line l emanating from the

Moon and inclined of an angle ϑ0 ∈ S1 with respect to the axis joining the Earth

and the Moon (see Fig.1). Then the ((r0, e0, ϑ0)-Test orbit) is the trajectory of the

spacecraft which at time t = 0:

– departs from the line l at a distance r0 > 0 from the Moon

– is at the periselenium or at the aposelenium of the osculating ellipse, i.e. its initial

velocity vector is normal to the line l, pointing in the direct or retrograde direction

– with a fixed initial eccentricity1 e0 ∈ [0, 1].

Therefore the initial conditions in polar coordinates are (recalling (5) and (10)):

R(0) = 0 , Φ(0) = ±
√
Mr0(1± e) , r(0) = r0 , ϕ(0) = ϑ0 , (11)

where in Φ(0) the first ± is + in the direct direction and − in the retrograde one and

the second ± depends if one is at the periselenium or at the aposelenium.

Analogously, in F2, consider radial line l emanating from the Moon and inclined

of an angle ϑ0 with respect to the horizontal axis (see Fig.1). The same orbit as above

has, in the rotating frame F2, the initial data (recall (6) and since t = 0):

R(0) = 0 , Θ(0) = ±
√
Mr0(1± e) , r(0) = r0 , ϑ(0) = ϑ0 , (12)

Definition 5 (Stability)

A test orbit is said to be stable about the Moon if, after leaving l, makes a full cycle

about the Moon in a time T > 0 without going around the Earth or crashing into the

Earth and returns to a point on l with HM (ψ(T )) ≤ 0.

Definition 6 (Instability)

A test orbit is said to be unstable about the Moon if:

– it performs a full cycle around the Moon without going around the Earth and

returns to a point on l with HM > 0

– the Spacecraft moves away from the Moon towards the Earth and makes a full

cycle about it or collides with it.

The stability definition above corresponds to the ballistic capture with respect to the

Moon given in Definition 2 at time both 0 and T (“ballistic capture transfer”). The

first condition of instability is called ballistic escape from the Moon, while the second

is called primary interchange escape.

1 This implies that the two body Kepler energy is negative.
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For every fixed (e, θ) ∈ [0, 1] × S1 Belbruno claims (Belbruno, 2004) that it is

possible to find numerically a finite distance r′ = r′(e, θ) > 0 from the Moon such that

a (r, e, θ)-test orbit is

stable if r < r′(e, θ) , unstable if r > r′(e, θ) . (13)

Definition 7 (Belbruno’s WSB)

W :=
{
(r, e, θ) ∈ R+ × [0, 1]× S1 s.t. r = r′(e, θ)

}
.

Note that W is a two dimensional stability transition region of position and velocity,

which has two components corresponding to the direct and retrograde motions.

2.3 Garćıa-Gómez definition of WSB

Garćıa and Gómez (2007) stress some lack of accuracy in Belbruno’s definitions. One

regards the definition of unstable orbits, and the other the definition of the radius of

change of stability r′(θ, e).
More precisely, the latter arises from noticing that Definition 7 is not exhaustive of

the complementary set of the Stable orbits as given in Definition 6. Therefore a more

general definition of instability is adapted in Garćıa and Gómez (2007), where is

defined as unstable any orbit that does not fulfill the Stability criterion. On the other

hand, they highlight that it is not clear how, for fixed values of θ and e there exist

a finite distance r′(θ, e) defining the boundary between stable and unstable orbits. In

fact it is shown in the paper that for each fixed inclination and eccentricity there are

many changes from stability to instability and that the set of the stable points recalls

a Cantor set.

Then Garćıa and Gómez (2007) proposed an extended definition of WSB:

Definition 8 ( Garćıa-Gómez WSB) ∀(e, θ) ∈ [0, 2π]×[0, 1] there exist a finite number

of points (up to a certain precision) r∗1 = 0, r∗2 = r∗2(e, θ), ..., r∗2n = r∗2n(e,θ) such that if

r belongs to

S∗(e, θ) :=
⋃

1≤j≤n

[r∗2j−1, r
∗
2j ] (14)

the motion of a (r, e, θ)-test orbit is stable according to Definition 5 otherwise it is

unstable. Then the WSB is defined as:

W :=
{
(r, e, θ) ∈ R+×[0, 1]×S1 s.t. r ∈ W(e, θ)

}
where W(e, θ) := ∂S∗(e, θ) ⊂ R+ .

(15)

The number of points r∗i and their values, varies with the values of θ and e, as well as

with the precision of computation.

As r∗1 = 0, the radius r∗2(e, θ), for each fixed θ and e, represents the bigger radius

such that ∀ 0 < r < r∗2(e, θ), a (r, e, θ)-test orbit is stable. Therefore, ∀θ, e fixed,

r∗2(e, θ) could be seen as a lower limit of the WSB. However, as the stability/instability

of an orbit is determined in a purely numerical way, all these properties would be true

only limited to a certain precision2, which means that nothing prevent an unstable

2 Note that Belbruno’s definition of WSB is affected by the same dependence from the
accuracy of the numerical evaluation
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test orbit to be found in the stable interval (0, r∗2(e, θ)], once the precision has been

increased. In Section 5 we will give analytic estimates on r∗2(e, θ) (i.e. with “infinite”

precision).

2.4 Our definition of WSB

Remark 1 In the following we consider the component of the WSB generated by direct

motions; analogous consideration for the retrograde motions are possible (leading to

better stability estimates in Section 5).

Interesting topological considerations on the WSB are possible if we add to the

definition of stability given in Definition 5 the request that the angular velocity ϑ̇(T )

of the test orbit (see Definition 4) at the time T > 0 of first return to the line l

(after making a full cycle around the Moon) is strictly positive, namely ϑ̇(T ) > 0. This

“transversality” condition is (sometimes) implicitly assumed by Belbruno and Garćıa

and Gómez (2007) and explicitly by Topputo (2007).

For (e, θ) ∈ [0, 1]× S1 we set

S = S(e, θ) := {r > 0 s.t. the (r, e, θ)−test orbit is stable according to Definition 5

and ϑ̇(T ) > 0} . (16)

Then we can give our definition of the WSB:

Definition 9

W :=
{
(r, e, θ) ∈ R+×[0, 1]×S1 s.t. r ∈ W(e, θ)

}
where W(e, θ) := ∂S(e, θ) ⊂ R+ .

We now investigate the relation between our analytic definition of the WSB and

the previous ones, that are algorithmic in nature.

Given a δ > 0 we define a subset Sδ(e, θ) of S(e, θ), which is a “δ-approximation” of

S(e, θ). By Proposition 1 S(e, θ) is the disjoint union of at most countable open intervals

Ij(e, θ), 0 ≤ j < j(e, θ) (where j(e, θ) ∈ N ∪ {∞}), with I0(e, θ) = (0, r∗(e, θ)), plus at

most a countable set of points. Therefore

meas
(
S(e, θ)

)
=

∑
0≤j<j(e,θ)

meas
(
Ij(e, θ)

)
.

Then, there exists3 jδ < j(e, θ) such that

Sδ(e, θ) :=
⋃

0≤j≤jδ

Ij(e, θ) ⊆ S(e, θ) (17)

satisfies

meas
(
Sδ(e, θ)

)
≥ meas

(
S(e, θ)

)
− δ . (18)

Consequently we can define a “δ-approximation” of the weak stability boundary setting

Wδ :=
{
(r, e, θ) ∈ R+ × [0, 1]× S1 s.t. r ∈ Wδ(e, θ)

}
where Wδ(e, θ) := ∂Sδ(e, θ) .

Remark 2 If δ > 0 is the “computational error” the sets S∗(e, θ) in (14) and Sδ(e, θ)

have the same form, being finite union of disjoint intervals4. The same holds for

W,W(e, θ) in (15) and Wδ,Wδ(e, θ) above.

3 If j(e, θ) <∞ one can take jδ = j(e, θ)− 1.
4 The fact that the intervals in (14) contain their endpoints is irrelevant since it does not

affect the boundary.
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3 The topology of the WSB

The topology of the stable set S(e, θ) is firstly considered (recall (16)), initially showing

that S(e, θ) is bounded.

Lemma 1 If r0 is large enough (independently from e and θ), a (r0, e, θ)-test orbit is

never stable, according to Definition 5. In particular, for every (e, θ) fixed, S(e, θ) is a

bounded subset of R+.

Proof Assume that5 r0 ≥ 104. We claim that ∀ 0 ≤ t ≤ 4π

r0
2
< r(t) < 2r0 , |Θ(t)| < 30r0 . (19)

By the Hamilton’s equation for the Hamiltonian H3 in (7) we get

ϑ̇ =
Θ

r2
− 1 , |Θ̇| ≤ 2r

|r − 1| + r , |r̈| ≤ Θ2

r3
+

1

r2
+

r + 1

|r − 1| + 1 . (20)

Let us prove (19) by contradiction. Assume that there exists 0 < T < 4π such that

(19) holds ∀ 0 < t < T and does not hold for t = T . Then we have

|Θ̇| ≤ 3 + 2r0 , |r̈| ≤ 8Θ2

r30
+

4

r20
+ 3

∀ 0 < t < T. Which yields

|Θ(t)| ≤ Θ0 + 4π(3 + 2r0)
(12)
≤

√
2r0 + 28r0 ≤ 29r0 ,

and

|r̈| ≤ 7200

r0
+

4

r20
+ 3 ≤ 4 =⇒ |r(t)− r0| ≤ 4

T 2

2
≤ 32π2 ≤ r0

3

∀ 0 < t < T. Then we get

|Θ(T )| ≤ 29r0 , |r(T )− r0| ≤
r0
3

namely (19) still holds for t = T , which is a contradiction. Recollecting we have proved

(19).

By (20) we have that ∀ 0 ≤ t ≤ 4π

ϑ̇(t) ≤ 120

r0
− 1 ≤ −1

2
.

This means that the orbit makes a clockwise turn around the origin in a time 0 < T∗ ≤
4π. In particular, since r(t) ≥ 5000, it makes a clockwise turn around the Earth and

the Moon, and therefore it is not stable (according to Definition 5).

Proof of Proposition 1

Let us fix (e, θ) ∈ (0, 1) × S1. We first claim that if r̄ ∈ S(e, θ) the first time T of

return on l after making a circle around the Moon is an analytic function of r in an

open neighborhood of r̄.

5 Obviously we did not make any effort in obtaining the best value of r0, since we are
interested only in its existence.
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Let us denote by ψ(t; r̄) = ψ(t; r̄, e, θ) the flow of the (r̄, e, θ)-test orbit. Let ϑ(t; r̄)

be its ϑ-component. Indeed if T̄ is the first time of return w.r.t. r̄ then, using the

transversality condition

ϑ(T̄ ; r̄) = θ , ∂Tϑ(T̄ ; r̄) = ϑ̇(T̄ ; r̄) > 0

and the implicit function theorem (in analytic class6) is applicable to the equation

ϑ(T ; r) = θ .

Then we find an analytic function T = T (r) such that ϑ(T (r); r) = θ for every r in an

open neighborhood of r̄.

Let us define

S<0 = S<0(e, θ) := {r ∈ S(e, θ) s.t. HM (ψ(T ; r)) < 0}

S=0 = S=0(e, θ) := {r ∈ S(e, θ) s.t. HM (ψ(T ; r)) = 0} .

Obviously S = S<0 ∪ S=0.

We first note that S<0 is an open subset of R+. If r̄ ∈ S<0, for every r in an

open neighborhood of r̄, T (r) is well defined, ϑ̇(T (r); r) > 0 and H(ψ(T (r); r)) < 0 by

continuity, since the Hamiltonian flow is a diffeomorphism.

The topology of S=0 is more involved. Assume that r̄ ∈ S=0. Still for every r ∈
(r̄−ε, r̄+ε) (with ε small enough), T (r) is well defined and ϑ̇(T (r); r) > 0 by continuity.

Let us consider the analytic function

h(r) := H(ψ(T (r); r)) .

Take r ∈ (r̄ − ε, r̄ + ε); then r ∈ S=0 iff h(r) = 0. Since h is analytic two cases are

possible: h is identically zero on (r̄ − ε, r̄ + ε) or there are at most a finite number of

zeros in [r̄−ε/2, r̄+ε/2]. Consequently any point of S=0 is an inner point or an isolated

point. Since the number of isolated points of a subset of R is at most countable7, S=0

is an open set plus, at most, a countable set of points. The same holds for S.

Note that, by standard measure theory arguments, any open subset of R+ is formed

by at most a countable disjoint union of open intervals (with at most one unbounded

interval).

We will prove below (see Corollary8 1) that if r is small enough (uniformly on e

and θ) then r ∈ S<0. Moreover S is bounded by Lemma 1. The proof of Proposition 1

is now completed.

Remark 3 It is conceivable that for some e, θ the set S(e, θ) does possess isolated

points, however to prove it is not straightforward.

6 Note that ϑ(T ; r) is an analytic function of T and r, since the Hamiltonian flow is analytic.
7 Since it can be covered by a union of disjoint open intervals.
8 Actually in Corollary 1 we consider only the case when the eccentricity is larger than 1/2,

as the case of eccentricity smaller than 1/2 is simpler (see Remark 4).
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4 The WSB in Delaunay coordinates

A complete derivation of Delaunay variables can be found in Goldstein et al. (2001),

Stiefel and Scheifele (1971) (also see Arnold et al. (2006) and Celletti and Chierchia

(2007)). Here we briefly recall the main points.

The osculating ellipse (see Definition 3) is identified by:

• e =eccentricity ,

• a =length of the major semi-axis

• γ =argument of the periselenium (measured from the horizontal axis of the inertial

frame).

The Delaunay coordinates are symplectic action-angle variables (L,G, `, g), where

the angles ` and g are conjugated to the actions L and G, respectively, where

• ` is the mean anomaly measured from the periselenium;

• g is the difference between the argument of the periselenium and the angle describing

the position of the Earth (measured from the horizontal axis of the inertial frame);

• L is related to the major semi-axis, a, by

L = M−1/6√a , where M := mass of the Moon ;

• G is the total angular momentum of the spacecraft with respect to the Moon (in

the inertial frame), related to the eccentricity and the variable L by

e =

√
1− G2

L2
. (21)

The motions of Earth-Moon-Spacecraft coplanar CR3BP in Delaunay variables are

described by the Hamiltonian9 (with the standard symplectic form dL∧ d`+ dG∧ dg)

H(L,G, `, g) := H∗(L,G, r, ρ) := − 1

2L2
−G+ ερ− ε

1√
r2 + 1− 2ρ

, (26)

9 The actions and the Hamiltonian are firstly scaled as H3 in (7):

R̃ := µR, Θ̃ := µΘ , H̃3(R̃, Θ̃, r, ϑ) := µH3(R̃/µ, Θ̃/µ, r, ϑ) (22)

(with symplectic form dR̃ ∧ dr + dΘ̃ ∧ dϑ) and choosing µ := M−2/3 (see formula (3.3.8) of
Celletti and Chierchia (2007)). This yields:

H̃3 =
1

2µ

(
R2 +

Θ2

r2

)
−

µM

r
−Θ −

µ(1−M)√
r2 + 1− 2r cos(ϑ + π)

+ µ(1−M)r cos(ϑ + π) .

Analogously, regarding the two-body Kepler energy HM in (8), it yields:

H̃M (R̃, Θ̃, r, ϑ) := µHM (R̃/µ, Θ̃/µ, r, ϑ) =
1

2µ

(
R2 +

Θ2

r2

)
−

µM

r
. (23)

Then the Delaunay variables are introduced (see formulas (3.2.21) and (3.2.22) of Celletti

and Chierchia (2007)), in which the Hamiltonian H̃3 takes the form H in (26), which is as in
formula (3.3.11) of Celletti and Chierchia (2007) (see also (34)). Note that

G = Θ̃ = µΘ = M−2/3Θ . (24)

And again analogously, in Delaunay variables, the two-Body Kepler energy H̃M takes the form:

H̃M = −
µ3M2

2L2
= −

1

2L2
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where r depends on L,G, ` and ρ depends on L,G, `, g in the following way:

• r is the distance of the spacecraft from the Moon, namely the origin; r is a function

of `, L,G (actually of ` and e =
√

1−G2/L2); more precisely

r = a(1− e cosu) = M
1
3L2(1− e cosu) (27)

where u = u(`, e) is the eccentric anomaly and is implicitly defined (for e ∈ [0, 1))

by the Kepler equation

` = u− e sinu; (28)

• ρ := r cos (ν + g) where ν is the true anomaly measured from the periselenium; also

ν is a function of `, L,G (actually of ` and e =
√

1−G2/L2) and it is defined by

the equation

tan
ν

2
=

√
1 + e

1− e
tan

u

2
; (29)

• ε is a scaled mass:

ε := M
−2
3 (1−M) .

Note that

ρ = r cos (ν + g) = a(cos g cosu− e cos g − G

L
sin g sinu)

= L2M
1
3 (cos g cosu− e cos g −

√
1− e2 sin g sinu) . (30)

Recalling (25) the two-Body Kepler energy in Delaunay variables has the form

HM = −M
2/3

2L2
. (31)

This two-Body Kepler energy is not the one corresponding to our Hamiltonian (26)

but the one directly obtained applying the changes of coordinates to (8) (i.e. without

scaling with µ). However, as we are only interested in the sign of this function, the

two are equivalent, since we can pass from one to the other by scaling with a positive

factor.

Furthermore, note that HM < 0. Indeed, by construction, Delaunay variables de-

scribe only motions with HM < 0. This is not a problem here. As a matter of fact in

the following we are interested in showing (analytically) that orbits starting sufficiently

close to the Moon are stable according to Definition 5.

By (27) we also have

HM =
M(e cosu− 1)

2r
, (32)

which at the periselenium, namely when ν = u = ` = 0, is

HM =
M(e− 1)

2r
, (33)

(see formula (3.2.22) of Celletti and Chierchia (2007)).
However if we directly apply this changes of coordinates to (8)(i.e. without scaling by the
positive factor µ), the two-Body Kepler energy in Delaunay variables takes the form:

HM = −
1

2µL2
= −

M2/3

2L2
. (25)
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which is the expression usually used by Belbruno.

In the rotating frame F2 the angle ϑ as function of the Delaunay variables is

ϑ = ν + g − π , (34)

since ν+g is the angle between the Moon-Spacecraft line and the Moon-Earth line (see

Figure (2)). In the rotating frame F2 we say that an orbit (r(t), ϑ(t)) of the Spacecraft

starting at time t = t0 makes an (anti-clockwise) circle around the Moon in a time

T > 0 if ∫ t0+T

t0

d

dt
ϑ dt =

∫ t0+T

t0

d

dt
(ν + g) dt = 2π. (35)

Fig. 2 The angle variables describing the system

A (r0, e0, ϑ0)-test orbit (see Definition 4) in Delaunay variables has:

1) ν(t) = 0 or π (periselenium or aposelenium)
(29)
=⇒ u(t) = 0 or π

(28)
=⇒ `(0) = 0

or π

2) ϑ(0) = ϑ0, (starting on the line l with inclination ϑ0)
(34)
=⇒ g(0) = ϑ0 + π or ϑ0

3) r(0) = r0 (starting at a distance r0 from the Moon)
(27)
=⇒ L(0) =

√
r0M−1/3/(1∓ e0)

4) e(0) = e0 (starting with eccentricity e0)
(21)
=⇒ G(0) = ±L(0)

√
1− e20 (+/− for

direct/retrograde direction).
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Recollecting a (r0, e0, ϑ0)-test orbit has initial data

L(0) =

√
r0M−1/3/(1∓ e0) (−/+ for periselenium/aposelenium) ,

G(0) = ±
√
r0M−1/3(1± e0) (+/− for direct/retrograde and periselenium/aposelenium) ,

`(0) = 0 or π (periselenium or aposelenium) ,

ϑ(0) = ϑ0 (36)

(recall also (12) and (24)).

The equation of motions of the Hamiltonian H in (26) are:

˙̀ = ∂LH =
dH∗

dL

= ∂LH
∗ + ∂rH

∗∂Lr + ∂rH
∗∂er∂Le+ ∂rH

∗∂ur∂eu∂Le

+∂ρH
∗∂Lρ+ ∂ρH

∗∂eρ∂Le+ ∂ρH
∗∂uρ∂eu∂Le

ġ = ∂GH =
dH∗

dG

= ∂GH
∗ + ∂rH

∗∂er∂Ge+ ∂rH
∗∂ur∂eu∂Ge+ ∂ρH

∗∂eρ∂Ge+ ∂ρH
∗∂uρ∂eu∂Ge

L̇ = −∂`H = −dH
∗

d`
= −∂rH

∗∂ur∂`u− ∂ρH
∗∂uρ∂`u

Ġ = −∂gH = −dH
∗

dg
= −∂ρH

∗∂gρ . (37)

where

∂LH
∗ =

1

L3
, ∂GH

∗ = −1 , ∂rH
∗ =

εr

(
√
r2 + 1− 2ρ)3

,

∂ρH
∗ = ε

(
1− 1

(
√
r2 + 1− 2ρ)3

)
,

with

r = r(L, e, u)
(27)
= M

1
3L2(1− e cosu)

and

ρ = ρ(L, g, e, u)
(30)
= L2M

1
3 (cos g cosu− e cos g −

√
1− e2 sin g sinu) .

therefore

∂Lr = 2LM
1
3 (1− e cosu)

∂ur = eL2M
1
3 sinu

∂er = −L2M
1
3 cosu

∂uρ = −L2M
1
3 (
√

1− e2 sin g cosu+ cos g sinu)

∂eρ = L2M
1
3 (− cos g + e√

1−e2 sin g sinu)

∂gρ = L2M
1
3 (e sin g − cosu sin g −

√
1− e2 cos g sinu)

∂Lρ = 2LM
1
3 (cos g cosu− e cos g −

√
1− e2 sin g sinu)

(38)
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Moreover, since e =
√

1− G2

L2 and u = u(`, e) solves the Kepler equation ` = u−e sinu,

we get

∂Le = G2

L3
√

1−G2
L2

=
(1−e2)

eL

∂Ge = − G

L2
√

1−G2
L2

= −
√

1−e2

eL

∂eu = sinu+ e cosu ∂eu⇒ ∂eu = sin u
1−e cos u

∂`u = 1 + e cosu ∂`u ⇒ ∂`u = 1
1−e cos u .

(39)

In conclusion:

˙̀ = ∂LH =

1
L3 + εM

1
3L

(
1− 1

(
√

1−2r cos (v+g)+r2)3

)[
cos g

(
2 cosu− e− 1

e −
sin2 u(1−e2)
e(1−e cos u)

)
+ sin g

(
−
√

1− e2 sinu(1 +
(1−e2) cos u
e(1−e cos u)

)
)]

+ εM
2
3L3

(
1

(
√

1−2r cos (v+g)+r2)3

)
·

·
[
3− 3e cosu+ 2e2 cos2 u− 1

e cosu− e2
]

(40)

ġ = ∂GH =

−1 + εM
1
3L

(
1− 1

(
√

1−2r cos (v+g)+r2)3

)[
cos g

(√
1−e2

e (1 + sin2 u
(1−e cos u)

)
)

+

+ sin g sinu
(

−e+cos u
e(1−e cos u)

)]
+ εM

2
3 L3

(
√

1−2r cos (v+g)+r2)3

[√
1−e2

e (cosu− e)
] (41)

L̇ = −∂`H =

−εM
1
3L2

(
−1 + 1

(
√

1−2r cos (v+g)+r2)3

)[
cos g

(
sin u

1−e cos u

)
+ sin g

(√
1−e2 cos u
1−e cos u

)]
− εM

2
3 L4

(
√

1−2r cos (v+g)+r2)3
(e sinu) .

(42)

Ġ = −∂gH =

−εM
1
3L2

(
−1 + 1

(
√

1−2r cos (v+g)+r2)3

)(
sin g(cosu− e) +

√
1− e2 cos g sinu

)
(43)

Since G appears in the Hamiltonian vector field only through e, it is convenient to

use e instead of G as independent variable. Then the value of G is recovered by the

formula

G = L
√

1− e2 .

The equation for ė is:

ė = ∂LeL̇+ ∂GeĠ =

−εM
1
3L

(
−1 + 1

(
√

1−2r cos (v+g)+r2)3

)[
cos g

(
(1−e2) sin u cos u

1−e cos u

)
+ sin g

√
1−e2

1−e cos u(
−2e cosu+ 1 + cos2 u

)]
− εM

2
3 L3

(
√

1−2r cos (v+g)+r2)3

(
(1− e2) sinu

)
=: w(L, e, `, g) .

(44)
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To sum up, in the variables (L, e, `, g), the equation of motions are

L̇ = −∂`H , ė = w , ˙̀ = ∂LH , ġ = ∂GH . (45)

5 Analytic estimates on the stable zone around the Moon

The aim of this section is to obtain a realistic, analytic estimate from below on r∗

defined in Proposition 1.

From the equations of motion it will be deduced that, if the Spacecraft starts close

enough to the Moon, then the Mean Anomaly is a so called “fast angle”. This means

that the Spacecraft actually comes back to the starting line l in a time of first return

T which is quite short, allowing to estimate the variation of all the other variables over

one revolution.

For some fixed

0 < Lmax , 1/2 ≤ emin < emax < 1 , (46)

satisfying

rmax := M1/3L2
max(1 + emax) < 1 , (47)

we set

Ω :=
{

(L, e, `, g) | L ∈ (0;Lmax) , e ∈ (emin; emax) , ` , g ∈ T1
}
. (48)

Notice that, by (27), in Ω

0 < r < rmax < 1 . (49)

Remark 4 In view of applications (i.e. the comparison with Hiten’s mission data) we

are interested to values of e close to 1, so we assume

emin ≥ 1/2. (50)

However it is possible to prove that better estimates can be obtained for smaller values

of the eccentricity.

Let us define

S0 := inf
Ω
∂LH , S1 := − inf

Ω
∂GH , S2 := sup

Ω
|∂`H| , S3 := sup

Ω
|w| . (51)

The next Lemma, whose proof can be found in Appendix 6, contains some analytic

estimates on S0, S1, S2, S3 in terms of Lmax, emin, emax (defined in (46)).

Lemma 2 We have that

S0 ≥ S̃0 , sup
Ω
|1 + ∂GH| ≤ S̃1 =⇒ S1 ≤ 1 + S̃1 , S2 ≤ S̃2 , S3 ≤ S̃3 , (52)

where

S̃0 :=
1

L3
max

− εM
1
3Lmax

(
1

(1− rmax)3
− 1

)
(1 + emin)2

emin

−εM
2
3L3

max

(
1

(1− rmax)3

)
(1 + emax)3

emax
, (53)
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S̃1 := εM
1
3Lmax

(
1

(1− rmax)3
− 1

) √3 + 2emin − e2min

emin
(54)

+
εM

2
3L3

max

(1− rmax)3

√
1− e2min

emin
(1 + emin) (55)

S̃2 := εM
1
3L2

max

(
1

(1− rmax)3
− 1

)√
1 + emax

1− emax
+

εM
2
3L4

max

(1− rmax)3
emax (56)

S̃3 := εM
1
3Lmax

(
1

(1− rmax)3
− 1

)
2
√

1− e2min +
εM

2
3L3

max

(1− rmax)3
(1− e2min) . (57)

Note that

S̃0 →∞ , S̃1 , S̃2/Lmax , S̃3 → 0 , as Lmax → 0 . (58)

In the following we will assume that

inf
Ω
∂LH = S0 > 0 , −S1 = inf

Ω
∂GH ≤ sup

Ω
∂GH ≤ 0 , S0 ≥ 5S1 , (59)

S2T̃ < Lmax , 2S3T̃ < emax − emin where T̃ = 2π/(S0 − S1) . (60)

Note that from (58) these conditions can always be assumed if Lmax is small enough.

Then we can choose

0 < L̃max := Lmax − S2T̃ < Lmax ,

emin < ẽmin := emin + S3T̃ < ẽmax := emax − S3T̃ < emax (61)

and set

Ω̃ :=
{

(L, e, `, g) | L ∈ (0, L̃max] , e ∈ [ẽmin, ẽmax] , ` , g ∈ T1
}
. (62)

Lemma 3 Assuming (59) and (60). Then

(L(0), e(0), `(0), g(0)) ∈ Ω̃ =⇒ (L(t), e(t), `(t), g(t)) ∈ Ω , ∀ t ∈ [0, T̃ ] .

Proof Assume by contradiction that ∃T∗ ∈ (0, T̃ ) such that (L(t), e(t), `(t), g(t)) ∈ Ω
for every t ∈ [0, T∗), but (L(T∗), e(T∗), `(T∗), g(T∗)) 6∈ Ω. Then (at least) one of the

following equalities occurs:

L(T∗) = Lmax , e(T∗) = emin , e(T∗) = emax .

But this is in contradiction with (61) from (45), (59) and (60), proving the Lemma.
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Proposition 2 Assume (59) and (60). A (r0, e0, θ0)-test orbit with

0 < r0 < r∗ := M1/3L̃2
max(1− ẽmax) , e0 ∈ (ẽmin, ẽmax) (63)

is stable according to Definition 5. In particular:

i) r(t) < 1 for every t ∈ [0, T̃ ], namely it cannot go around the Earth or crash into

the Earth up to time T̃

ii) there exists 0 < T ≤ T̃ such that∫ T

0
ν̇ + ġ = 2π , (64)

namely the orbit makes a circle around the Moon in time T .

Moreover

ϑ̇(T ) = ν̇(T ) + ġ(T ) > 0 .

Remark 5 In the proposition above we consider the worst case, which is when the test

orbit starts at periselenium (see the minus sign in equation (63) and recall (36)). Better

estimates hold for the aposelenium case (in particular replace 1− ẽmax with 1 + ẽmin

in formula (63)).

Proof. Let us first note that, by (27) and (63) the test orbits starts in Ω̃. Then,

by Lemma 3, it remains in Ω for every t ∈ [0, T̃ ]. In particular, by (49), r(t) < 1 for

every t ∈ [0, T̃ ].

Let us consider only the case `(0) = 0, the case `(0) = π being analogous We claim

that there exists 0 < T∗ ≤ T̄ such that∫ T∗

0

˙̀ + ġ = 2π and 2π ≤
∫ T∗

0

˙̀ ≤ 3π . (65)

Since ˙̀+ ġ ≥ S0−S1 > 0 the existence of (a unique) 0 < T∗ ≤ T̄ satisfying the equality

in (65) follows. Also the first inequality in (65) is trivial since ġ ≤ 0. It remains to prove

that
∫ T∗
0

˙̀ ≤ 3π. Assume by contradiction that
∫ T∗
0

˙̀ > 3π. Then

2π =

∫ T∗

0

˙̀ + ġ > 3π − S1T∗ ≥ 3π − S1T̄ ≥ 2π

since S0 ≥ 3S1. This proves (65).

Note that the solution u = u(`) of the Kepler equation (28) and ν = ν(u) in (29)

satisfy u(nπ) = nπ = ν(nπ)

ν(u) ≥ u , u(`) ≥ ` when u, ` ∈ [0, π] + 2nZ . (66)

In particular ν(u(`)) ≥ ` for ` ∈ [0, π] + 2nZ. Since by (65) `(T∗) ∈ [2π, 3π] we get

ν(T∗) = ν(u(`(T∗))) ≥ `(T∗). Then, since ν(0) = ν(u(`(0))) = ν(u(0)) = 0,∫ T∗

0
ν̇ + ġ = ν(T∗) +

∫ T∗

0
ġ ≥ `(T∗) +

∫ T∗

0
ġ =

∫ T∗

0

˙̀ + ġ = 2π .

The existence of T in (64) follows by continuity.
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Using (28) and (29) and denoting ut := u(`(t)), νt := ν(ut) we compute for 0 ≤
t ≤ T

ν̇(t) =
dν

du
(ut)

du

d`

(
l(t)
)
˙̀(t)

=

(
1 +

1 + e

1− e
tan2(ut/2)

)−1√
1 + e

1− e

1

cos2(ut/2)

1

1− e cosut
˙̀(t)

=
(
1 + tan2(νt/2)

)−1
√

1 + e

1− e

1

cos2(ut/2)

1

1− e cosut
˙̀(t) > 0 . (67)

Denoting ν∗ := ν(T )− 2π we have that 0 ≤ ν∗ ≤ π/2. Indeed 0 ≤ ν∗ follows since

ν̇ > 0. On the other hand (64) implies that

ν∗ = −
∫ T

0
ġ ≤ S1T ≤ 2π

S1

S0 − S1

S0≥5S1
≤ π

2
.

Noting that u∗ := u(T )− 2π satisfies 0 ≤ u∗ ≤ ν∗ ≤ π/2 (recall (66)), by (67) we get

ν̇(T ) >
(
1 + tan2(ν∗/2)

)−1
˙̀(T ) ≥ ˙̀(T )/2 ≥ S0/2 .

Then

ν̇(T ) + ġ(T ) ≥ S0/2− S1 ≥ 3S1/2 > 0 .

The proposition is proved.

Corollary 1 Choose

0 < L̃max < Lmax ,
1

2
≤ emin < ẽmin < ẽmax < emax ≤ 1

satisfying (47), (59), (60) and (61).

Then

S(e, θ) ⊃ (0, r∗) ∀ e ∈ (ẽmin, ẽmax) ∀ θ ∈ S1 ,

where r∗ was defined in (63).

5.1 An example

We now explicitly evaluate the value of r∗(e) when e = 0.95, which is the initial

eccentricity used by Belbruno in the Hiten mission (see p.145 of Belbruno (2004)).

We have to choose parameters satisfying the hypotheses of Corollary 1. We proceed

in two ways. The former is analytic and uses Lemma 2 to estimate Si, i = 0, 1, 2, 3 in

(52). The latter is numerical and uses Mathematica to estimates the supΩ and infΩ in

(52).

In the first case we note that the conditions

S̃0 > 0 , S̃1 < 1 , S̃0 ≥ 5(S̃1 + 1)

S̃2T̄ < Lmax , 2S̃3T̄ < emax − emin with T̄ := 2π/(S̃0 − S̃1 − 1)
(68)

imply (59)-(60), from (52) and T̄ ≥ T̃ .
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Taking

Lmax := 0.271337 , emin := 0.938443 , emax := 0.961557

which implies, by (47):

rmax := 0.0333365

we get

S̃0 = 49.3889 , S̃1 = 0.280378 , S̃2 = 0.246627 , S̃3 = 0.0884847 , T̄ = 0.130604 .

Then (47) and (68) are satisfied. By (61)

L̃max = 0.239126 , ẽmin = 0.4999837 , ẽmax = 0.950000057 ,

and 0.95 ∈ [ẽmin, ẽmax]. By (63) we get

r∗(0.95) = 0.000659972

Since the escaping radius used by Belbruno in the Hiten mission was rBel := 0.00478148

we get

rBel/r
∗(0.95) = 7.24497 . (69)

The value of r∗ can be slightly improved numerically estimating S0, S1, S2, S3 in

(51), e.g. by Mathematica. Taking

Lmax := 0.3735 , emin := 0.899 , emax := 0.9999

we get

S0 = 18.4422 , S1 = 1.11143 , S2 = 0.0367016 , S3 = 0.137461 , T̃ = 0.362545 .

Then (47), (59) and (60) are satisfied. By (61)

L̃max = 0.360194 , ẽmin = 0.948836 , ẽmax = 0.950064 ,

and 0.95 ∈ [ẽmin, ẽmax]. By (63) we get

r∗(0.95) = 0.0014955

In this case we have that

rBel/r
∗(0.95) = 3.19725 . (70)
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6 Appendix

We prove Lemma 2. We have

minΩ ∂LH ≥ 1
L3

max
− εM

1
3Lmax max

Ω

{∣∣∣∣∣1− 1

(
√

1− 2r cos (v + g) + r2)3

∣∣∣∣∣
}

max
Ω

{∣∣∣∣cos g

(
2 cosu− e− 1

e
− sin2 u(1− e2)

e(1− e cosu)

)
+ sin g

(
−
√

1− e2 sinu(1 +
(1−e2) cos u
e(1−e cos u)

)
)∣∣∣}

−εM
2
3L3

max
1

(1−rmax)3
max

Ω

{∣∣∣∣3− 3e cosu+ 2e2 cos2 u− 1

e
cosu− e2

∣∣∣∣}
≥ 1

L3
max

− εM
1
3Lmax

(
1

(1−rmax)3
− 1
)

max
e∈[emin,emax],u∈[0,2π]

{(
1

4e2(1− e cosu)(
10 + 22e2 + 8e4 − 3e(7 + 13e2) cosu+ 6(−1 + 3e2 + 2e4)·

· cos (2u) + (e− e3 − 4e5) cos (3u)
)) 1

2
}
− εM

2
3L3

max

(
1

(1−rmax)3

)
max

e∈[emin,emax],u∈[0,2π]

{∣∣∣∣3− 3e cosu+ 2e2 cos2 u− 1

e
cosu− e2

∣∣∣∣}
≥ 1

L3
max

− εM
1
3Lmax

(
1

(1−rmax)3
− 1
)

max
u∈[0,2π]

{∣∣∣∣( 1

4e2min(1− emin cosu)(
10 + 22e2min + 8e4min − 3emin(7 + 13e2min) cosu+ 6(−1 + 3e2min + 2e4min)·

· cos (2u) + (emin − e3min − 4e5min) cos (3u)
)) 1

2
∣∣∣∣}− εM

2
3L3

max

(
1

(1−rmax)3

)
max

e∈[emin,emax]

{
(1 + e)3

e

}
(71)

where it has been used that

max
g∈[0,2π]

(A cos g +B sin g) =
√
A2 +B2 (72)

and it has been noted that, by (50), the function(
1

4e2(1−e cos u)

(
10 + 22e2 + 8e4 − 3e(7 + 13e2) cosu+ 6(−1 + 3e2 + 2e4) cos (2u)+

+(e− e3 − 4e5) cos (3u)
)) 1

2

reaches its maximum in u = π leading to the decreasing function (1 + e)2/e.

The function ∣∣∣∣3− 3e cosu+ 2e2 cos2 u− 1

e
cosu− e2

∣∣∣∣
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has two relative maxima in u = 0 and u = π ∀e ∈ (0, 1], u ∈ [0, 2π]; therefore the

absolute maximum is reached for u = π. Finally (1 + e)3/e is increasing by (50). This

proves (53).

Analogously:

sup
Ω

|1 + ∂GH|

≤ εM
1
3Lmax max

Ω

∣∣∣∣∣1− 1

(
√

1− 2r cos (v + g) + r2)3

∣∣∣∣∣
·max

Ω

∣∣∣∣∣cos g

(√
1− e2

e
(1 +

sin2 u

(1− e cosu)
)

)
+ sin g sinu

(
−e+ cosu

e(1− e cosu)

)∣∣∣∣∣
+
εM

2
3L3

max

(1− rmax)3
max

Ω

∣∣∣∣∣
√

1− e2

e
(cosu− e)

∣∣∣∣∣
(72)
≤ εM

1
3Lmax

(
1

(1− rmax)3
− 1

)
max

e∈[emin,emax],u∈[0,2π]

√
f1(e, cosu)

+
εM

2
3L3

max

(1− rmax)3
max

e∈[emin,emax]

√
1− e2

e
(1 + e)

≤ εM
1
3Lmax

(
1

(1− rmax)3
− 1

)
max

u∈[0,2π]

√
f1(emin, cosu)

+
εM

2
3L3

max

(1− rmax)3

√
1− e2min

emin
(1 + emin)

where

f1(e, x) :=
1

e2(1− ex)

(
4− 3e2 − (2e− e3)x− (3− 2e2)x2 + ex3

)
and we used that f1(e, cosu) is monotone decreasing in the eccentricity ∀u ∈ [0, 2π].

Since

f1(e, x) =
1

e2(1− ex)

(
3− 2e2 − ex− (3− 2e2)x2 + ex3

)
+

1− e2

e2
= f2(e, x)+

1− e2

e2

where

f2(e, x) :=
(1− x2)(3− 2e2 − x)

e2(1− ex)
.

Note that, for |x| ≤ 1, f2 is a positive function which attains maximum for 0 ≤ x ≤ 1.

For 0 ≤ x ≤ 1 the term 1− x2 is decreasing, while (3− 2e2 − x)/(1− ex) is increasing.

A rough estimate of this value is obtained evaluated the first term in x = 0 and the

second one in x = 1, getting 2(1 + e)/e2. Recollecting we have that

0 ≤ f1(e, x) ≤
3 + 2e− e2

e2
≤ 3 + 2emin − e2min

e2min

Finally it has been used that the function
√

1− e2(1− e)/e is monotone decreasing.
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By (42)

sup
Ω
|∂`H| ≤ εM

1
3L2

max

(
−1 +

1

(1− rmax)3

)
·max

Ω

∣∣∣∣∣cos g

(
sinu

1− e cosu

)
+ sin g

(√
1− e2 cosu

1− e cosu

)∣∣∣∣∣
+
εM2/3L4

max

(1− rmax)3
emax

≤ εM
1
3L2

max

(
−1 +

1

(1− rmax)3

)√
1 + emax

1− emax
+

εM
2
3L4

max

(1− rmax)3
emax ,

where in the last inequality we have used (72) and the fact that

1 + e cosu

(1− e cosu)
≤ 1 + emax

1− emax
.

Then (56) follows.

We conclude estimating w in (44)

supΩ |w| ≤
(
εM

1
3Lmax

(
−1 + 1

(1−rmax)3

)
max

Ω

{∣∣∣∣∣cos g

(
(1− e2) sinu cosu

1− e cosu

)
+ sin g

√
1− e2

1− e cosu

(
−2e cosu+ 1 + cos2 u

)∣∣∣∣∣
}

+
εM

2
3 L3

max

(1−rmax)3
(1− e2min)

≤ εM
1
3Lmax

(
−1 + 1

(1−rmax)3

)
2
√

1− e2min +
εM

2
3 L3

max

(1−rmax)3
(1− e2min) ,

(73)

where in the last inequality we have used (72) and the fact that

10− 15e cosu+ 6 cos 2u− e cos 3u

(1− e cosu)
≤ 16 .
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