1,977 research outputs found

    A Perspective on Hadron Physics

    Full text link
    The phenomena of confinement and dynamical chiral symmetry breaking are basic to understanding hadron observables. They can be explored using Dyson-Schwinger equations. The existence of a systematic, nonperturbative and symmetry preserving truncation of these equations enables the proof of exact results in QCD, and their illustration using simple but accurate models. We provide a sketch of the material qualitative and quantitative success that has been achieved in the study of pseudoscalar and vector mesons. Efforts are now turning to the study of baryons, which we exemplify via a calculation of nucleon weak and pionic form factors.Comment: 16 pages, 5 figures. Contribution to the proceedings of the "Xth Mexican Workshop on Particles and Fields," Morelia, Mexico, 6-12 Nov. 200

    The Sigma Commutator from Lattice QCD

    Get PDF
    As a direct source of information on chiral symmetry breaking within QCD, the sigma commutator is of considerable importance. Since hadron structure is a non-perturbative problem, numerical calculations on a space-time lattice are currently the only rigorous approach. With recent advances in the calculation of hadron masses within full QCD, it is of interest to see whether the sigma commutator can be calculated directly from the dependence of the nucleon mass on the input quark mass. We show that, provided the correct chiral behaviour of QCD is respected in the extrapolation to realistic quark masses, one can indeed obtain a fairly reliable determination of the sigma commutator using present lattice data. For two-flavour dynamical fermion QCD the sigma commutator lies between 45 and 55 MeV based on recent data from CP-PACS and UKQCD.Comment: 4 pages, 3 figures, uses espcrc1.sty and epsfig.sty. Contribution to the proceedings of the International Conference on Quark Nuclear Physics held in Adelaide Feb. 200

    Chiral Nonanalytic Behaviour: The Edinburgh Plot

    Get PDF
    The Edinburgh Plot is a scale independent way of presenting lattice QCD calculations over a wide range of quark masses. In this sense it is appealing as an indicator of how the approach to physical quark masses is progressing. The difficulty remains that even the most state of the art calculations are still at quark masses that are too heavy to apply dimensionally-regulated chiral perturbation theory. We present a method allowing predictions of the behaviour of the Edinburgh plot, in both the continuum, and on the lattice.Comment: 3 pages, 4 figures, Lattice2002(Spectrum

    Baryon Mass Extrapolation

    Get PDF
    Consideration of the analytical properties of pion-induced baryon self-energies leads to new functional forms for the extrapolation of light baryon masses. These functional forms reproduce the leading non-analytic behavior of chiral perturbation theory, the correct heavy-quark limit and have the advantage of containing information on the extended structure of hadrons. The forms involve only three unknown parameters which may be optimized by fitting to present lattice data. Recent dynamical fermion results from CP-PACS and UK-QCD are extrapolated using these new functional forms. We also use these functions to probe the limit of the chiral perturbative regime and shed light on the applicability of chiral perturbation theory to the extrapolation of present lattice QCD results.Comment: LATTICE99 (QCD Spectrum and Quark Masses

    Chiral Corrections to Baryon Masses Calculated within Lattice QCD

    Get PDF
    Consideration of the analytic properties of pion-induced baryon self energies leads to new functional forms for the extrapolation of light baryon masses. These functional forms reproduce the leading non-analytic behavior of chiral perturbation theory, the correct non-analytic behavior at the NĎ€N \pi threshold and the appropriate heavy-quark limit. They involve only three unknown parameters, which may be obtained by fitting lattice QCD data. Recent dynamical fermion results from CP-PACS and UKQCD are extrapolated using these new functional forms. We also use these functions to probe the limit of applicability of chiral perturbation theory.Comment: 4 pages, 2 figures, Contribution to the Proceedings of the 15th Particles and Nuclei International Conference (PANIC 99), Uppsala, Sweden, June 10-16, 199

    Dynamical chiral symmetry breaking and a critical mass

    Get PDF
    On a bounded, measurable domain of non-negative current-quark mass, realistic models of QCD's gap equation can simultaneously admit two inequivalent dynamical chiral symmetry breaking (DCSB) solutions and a solution that is unambiguously connected with the realisation of chiral symmetry in the Wigner mode. The Wigner solution and one of the DCSB solutions are destabilised by a current-quark mass and both disappear when that mass exceeds a critical value. This critical value also bounds the domain on which the surviving DCSB solution possesses a chiral expansion. This value can therefore be viewed as an upper bound on the domain within which a perturbative expansion in the current-quark mass around the chiral limit is uniformly valid for physical quantities. For a pseudoscalar meson constituted of equal mass current-quarks, it corresponds to a mass m_{0^-}~0.45GeV. In our discussion we employ properties of the two DCSB solutions of the gap equation that enable a valid definition of in the presence of a nonzero current-mass. The behaviour of this condensate indicates that the essentially dynamical component of chiral symmetry breaking decreases with increasing current-quark mass.Comment: 9 pages, 7 figures. Minor wording change

    Chiral Extrapolation: An Analogy with Effective Field Theory

    Get PDF
    We draw an analogy between the chiral extrapolation of lattice QCD calculations from large to small quark masses and the interpolation between the large mass (weak field) and small mass (strong field) limits of the Euler--Heisenberg QED effective action. In the latter case, where the exact answer is known, a simple extrapolation of a form analogous to those proposed for the QCD applications is shown to be surprisingly accurate over the entire parameter range.Comment: 6 pp, revtex, 3 figs; minor changes -- version to appear in PL

    Debris disc candidates in systems with transiting planets

    Full text link
    Debris discs are known to exist around many planet-host stars, but no debris dust has been found so far in systems with transiting planets. Using publicly available catalogues, we searched for infrared excesses in such systems. In the recently published Wide-Field Infrared Survey Explorer (WISE) catalogue, we found 52 stars with transiting planets. Two systems with one transiting "hot Jupiter" each, TrES-2 and XO-5, exhibit small excesses both at 12 and 22 microns at a > 3 sigma level. Provided that one or both of these detections are real, the frequency of warm excesses in systems with transiting planets of 2-4 % is comparable to that around solar-type stars probed at similar wavelengths with Spitzer's MIPS and IRS instruments. Modelling suggests that the observed excesses would stem from dust rings with radii of several AU. The inferred amount of dust is close to the maximum expected theoretically from a collisional cascade in asteroid belt analogues. If confirmed, the presence of debris discs in systems with transiting planets may put important constraints onto formation and migration scenarios of hot Jupiters.Comment: Accepted for publication in MNRAS Letter

    A Large Animal Survival Model to Evaluate Bariatric Surgery Mechanisms

    Get PDF
    BACKGROUND: The impact of Roux-en-Y gastric bypass (RYGB) on type 2 diabetes mellitus is thought to result from upper and/or lower gut hormone alterations. Evidence supporting these mechanisms is incomplete, in part because of limitations in relevant bariatric-surgery animal models, specifically the lack of naturally insulin-resistant large animals. With overfeeding, Ossabaw swine develop a robust metabolic syndrome, and may be suitable for studying post-surgical physiology. Whether bariatric surgery is feasible in these animals with acceptable survival is unknown. METHODS: Thirty-two Ossabaws were fed a high-fat, high-cholesterol diet to induce obesity and insulin resistance. These animals were assigned to RYGB (n = 8), RYGB with vagotomy (RYGB-V, n = 5), gastrojejunostomy (GJ, n = 10), GJ with duodenal exclusion (GJD, n = 7), or sham operation (n = 2) and were euthanized 60 days post-operatively. Post-operative changes in weight and food intake are reported. RESULTS: Survival to scheduled necropsy among surgical groups was 77%, living an average of 57 days post-operatively. Cardiac arrest under anesthesia occurred in 4 pigs. Greatest weight loss (18.0% ± 6%) and food intake decrease (57.0% ± 20%) occurred following RYGB while animals undergoing RYGB-V showed only 6.6% ± 3% weight loss despite 50.8% ± 25% food intake decrease. GJ (12.7% ± 4%) and GJD (1.2% ± 1%) pigs gained weight, but less than sham controls (13.4% ± 10%). CONCLUSIONS: A survival model of metabolic surgical procedures is feasible, leads to significant weight loss, and provides the opportunity to evaluate new interventions and subtle variations in surgical technique (e.g. vagus nerve sparing) that may provide new mechanistic insights
    • …
    corecore