203 research outputs found

    Magnetic ordering of Mn sublattice, dense Kondo lattice behavior of Ce in (RPd3)8Mn (R = La, Ce)

    Full text link
    We have synthesized two new interstitial compounds (RPd3)8Mn (R = La and Ce). The Mn ions present in "dilute" concentration of just 3 molar percent form a sublattice with an unusually large Mn-Mn near neighbor distance of ~ 85 nm. While the existence of (RPd3)8M (where M is a p-block element) is already documented in the literature, the present work reports for the first time the formation of this phase with M being a 3d element. In (LaPd3)8Mn, the Mn sub-lattice orders antiferromagnetically as inferred from the peaks in low-field magnetization at 48 K and 23 K. The latter peak progressively shifts towards lower temperatures in increasing magnetic field and disappears below 1.8 K in a field of ~ 8 kOe. On the other hand in (CePd3)8Mn the Mn sublattice undergoes a ferromagnetic transition around 35 K. The Ce ions form a dense Kondo-lattice and are in a paramagnetic state at least down to 1.5 K. A strongly correlated electronic ground state arising from Kondo effect is inferred from the large extrapolated value of C/T = 275 mJ/Ce-mol K^2 at T = 0 K. In contrast, the interstitial alloys RPd3Mnx (x = 0.03 and 0.06), also synthesized for the first time, have a spin glass ground state due to the random distribution of the Mn ions over the available "1b" sites in the parent RPd3 crystal lattice.Comment: 18 figures and 20 pages of text documen

    Drell-Yan production at small q_T, transverse parton distributions and the collinear anomaly

    Full text link
    Using methods from effective field theory, an exact all-order expression for the Drell-Yan cross section at small transverse momentum is derived directly in q_T space, in which all large logarithms are resummed. The anomalous dimensions and matching coefficients necessary for resummation at NNLL order are given explicitly. The precise relation between our result and the Collins-Soper-Sterman formula is discussed, and as a by-product the previously unknown three-loop coefficient A^(3) is obtained. The naive factorization of the cross section at small transverse momentum is broken by a collinear anomaly, which prevents a process-independent definition of x_T-dependent parton distribution functions. A factorization theorem is derived for the product of two such functions, in which the dependence on the hard momentum transfer is separated out. The remainder factors into a product of two functions of longitudinal momentum variables and x_T^2, whose renormalization-group evolution is derived and solved in closed form. The matching of these functions at small x_T onto standard parton distributions is calculated at O(alpha_s), while their anomalous dimensions are known to three loops.Comment: 32 pages, 2 figures; version to appear in Eur. Phys. J.

    DC Josephson Effect in SNS Junctions of Anisotropic Superconductors

    Full text link
    A formula for the Josephson current between two superconductors with anisotropic pairing symmetries is derived based on the mean-field theory of superconductivity. Zero-energy states formed at the junction interfaces is one of basic phenomena in anisotropic superconductor junctions. In the obtained formula, effects of the zero-energy states on the Josephson current are taken into account through the Andreev reflection coefficients of a quasiparticle. In low temperature regimes, the formula can describe an anomaly in the Josephson current which is a direct consequence of the exsitence of zero-energy states. It is possible to apply the formula to junctions consist of superconductors with spin-singlet Cooper pairs and those with spin-triplet Cooper pairs

    Development and initial psychometric properties of the Warwick–Edinburgh Mental Wellbeing Scale‐Intellectual Disability version

    Get PDF
    Background The Warwick–Edinburgh Mental Wellbeing Scale (WEMWBS; Tennant et al., 2007) is yet to be validated in the intellectual disability (ID) population. The aim of this study was to report the development process and assess the psychometric properties of a newly adapted version of the WEMWBS and the Short WEMWBS for individuals with mild to moderate IDs (WEMWBS-ID/SWEMWBS-ID). Method The WEMWBS item wordings and response options were revised by clinicians and researchers expert in the field of ID, and a visual aid was added to the scale. The adapted version was reviewed by 10 individuals with IDs. The measure was administered by researchers online using screenshare, to individuals aged 16+ years with mild to moderate IDs. Data from three UK samples were collated to evaluate the WEMWBS-ID (n = 96). A subsample (n = 22) completed the measure again 1 to 2 weeks later to assess test–retest reliability, and 95 participants additionally completed an adapted version of the adapted Rosenberg Self-Esteem Scale to examine convergent validity. Additional data from a Canadian sample (n = 27) were used to evaluate the SWEMWBS-ID (n = 123). Results The WEMWBS-ID demonstrated good internal consistency (ω = 0.77–0.87), excellent test–retest reliability [intraclass correlation coefficient (ICC) = .88] and good convergent validity with the self-esteem scale (r = .48–.60) across samples. A confirmatory factor analysis for a single factor model demonstrated an adequate fit. The SWEMWBS-ID showed poor to good internal consistency (ω = 0.36–0.74), moderate test–retest reliability (ICC = .67) and good convergent validity (r = .48–.60) across samples, and a confirmatory factor analysis indicated good model fit for a single factor structure. Conclusions The WEMWBS-ID and short version demonstrated promising psychometric properties, when administered virtually by a researcher. Further exploration of the scales with larger, representative samples is warranted

    Josephson Coupling and Fiske Dynamics in Ferromagnetic Tunnel Junctions

    Full text link
    We report on the fabrication of Nb/AlO_x/Pd_{0.82}Ni_{0.18}/Nb superconductor/insulator/ferromagnetic metal/superconductor (SIFS) Josephson junctions with high critical current densities, large normal resistance times area products, high quality factors, and very good spatial uniformity. For these junctions a transition from 0- to \pi-coupling is observed for a thickness d_F ~ 6 nm of the ferromagnetic Pd_{0.82}Ni_{0.18} interlayer. The magnetic field dependence of the \pi-coupled junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd_{0.82}Ni_{0.18} has an out-of-plane anisotropy and large saturation magnetization, indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes provides information on the junction quality factor and the relevant damping mechanisms up to about 400 GHz. Whereas losses due to quasiparticle tunneling dominate at low frequencies, the damping is dominated by the finite surface resistance of the junction electrodes at high frequencies. High quality factors of up to 30 around 200 GHz have been achieved. Our analysis shows that the fabricated junctions are promising for applications in superconducting quantum circuits or quantum tunneling experiments.Comment: 15 pages, 9 figure

    ReïŹning and regaining skills in ïŹxation/diversiïŹcation stage performers: The Five-A Model

    Get PDF
    Technical change is one of many factors underpinning success in elite, fixation/diversification stage performers. Surprisingly, however, there is a dearth of research pertaining to this process or the most efficacious methods used to bring about such a change. In this paper we highlight the emergent processes, yet also the lack in mechanistic comprehension surrounding technical change, addressing issues within the motor control, sport psychology, coaching and choking literature. More importantly, we seek an understanding of how these changes can be made more secure to competitive pressure, and how this can be embedded within the process of technical change. Following this review, we propose The Five-A Model based on successful coaching techniques, psychosocial concomitants, the avoidance of choking and principles of effective behaviour change. Specific mechanisms for each stage are discussed, with a focus on the use of holistic rhythm-based cues as a possible way of internalising changes. Finally, we suggest the need for further research to examine these five stages, to aid a more comprehensive construction of the content and delivery of such a programme within the applied setting

    Genetic diversity of the myrtle rust pathogen (Austropuccinia psidii) in the Americas and Hawaii : global implications for invasive threat assessments

    Get PDF
    Since the myrtle rust pathogen (Austropuccinia psidii) was first reported (as Puccinia psidii) in Brazil on guava (Psidium guajava) in 1884, it has been found infecting diverse myrtaceous species. Because A. psidii has recently spread rapidly worldwide with an extensive host range, genetic and genotypic diversities were evaluated within and among A. psidii populations in its putative native range and other areas of myrtle rust emergence in the Americas and Hawaii. Microsatellite markers revealed several unique multilocus genotypes (MLGs), which grouped isolates into nine distinct genetic clusters [C1–C9 comprising C1: from diverse hosts from Costa Rica, Jamaica, Mexico, Puerto Rico, and USA‐Hawaii, and USA‐California; C2: from eucalypts (Eucalyptus spp.) in Brazil/Uruguay and rose apple (Syzygium jambos) in Brazil; C3: from eucalypts in Brazil; C4: from diverse hosts in USA‐Florida; C5: from Java plum (Syzygium cumini) in Brazil; C6: from guava and Brazilian guava (Psidium guineense) in Brazil; C7: from pitanga (Eugenia uniflora) in Brazil; C8: from allspice (Pimenta dioica) in Jamaica and sweet flower (Myrrhinium atropurpureum) in Uruguay; C9: from jabuticaba (Myrciaria cauliflora) in Brazil]. The C1 cluster, which included a single MLG infecting diverse host in many geographic regions, and the closely related C4 cluster are considered as a “Pandemic biotype,” associated with myrtle rust emergence in Central America, the Caribbean, USA‐Florida, USA‐Hawaii, Australia, China‐Hainan, New Caledonia, Indonesia and Colombia. Based on 19 bioclimatic variables and documented occurrences of A. psidii contrasted with reduced sets of specific genetic clusters (subnetworks, considered as biotypes), maximum entropy bioclimatic modelling was used to predict geographic locations with suitable climate for A. psidii which are at risk from invasion. The genetic diversity of A. psidii throughout the Americas and Hawaii demonstrates the importance of recognizing biotypes when assessing the invasive threats posed by A. psidii around the globe.USDA-Forest Service, RMRS-Forest and Woodlands Ecosystem Program, Western Wildlands Environmental Threat Assessment Center, Special Technology Development Program, State and Private Forestry, Forest Health Protection-Region 5; Conselho Nactional de Desenvolvimento Científico e Tecnológico, Brasil (CNPq); Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG); Research Joint Venture Agreements RMRS 15-JV-11221633-160 (Jane Stewart, Colorado State University) and RMRS 14-JV-11221633-117 (Western Forest Conservation Association).http://wileyonlinelibrary.com/journal/efp2019-02-01hj2018Forestry and Agricultural Biotechnology Institute (FABI)Plant Production and Soil Scienc

    Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

    Get PDF
    We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10-11 to 5.0 × 10-21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10-6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation
    • 

    corecore