10 research outputs found

    Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    Get PDF
    The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere

    Discovery of Diffuse Aurora on Mars

    No full text
    International audienceThe Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2014) onboard the MAVEN spacecraft has discovered diffuse aurora in Mars’ northern hemisphere spanning a wide range of geographic latitudes and longitudes (Figure 1). This widespread aurora differs from the small auroral patches discovered by the SPICAM instrument onboard the Mars Express spacecraft (Bertaux et al., 2005; Leblanc et al., 2008; Gérard et al., submitted; Soret et al., submitted) restricted to regions of crustal magnetic fields in the southern hemisphere. Furthermore, the northern diffuse aurora appears to peak at altitudes below 100 km, while the crustal field aurora peaked around 120 km

    Saturn Auroral Images and Movies from Cassini UVIS

    Full text link
    Cassini’s Ultraviolet Imaging Spectrograph (UVIS) has completed five years of study of Saturn’s atmosphere and auroras. Two long slit spectral channels are used to obtain EUV data from 56.3-118.2 nm and FUV data from 111.5-191.3 nm. 64 spatial pixels along each slit are combined with slit motion to construct spectral images of Saturn. Auroral emissions are seen from electron-excited molecular and atomic hydrogen. In 2008-2009 UVIS obtained data with the spacecraft well out of Saturn’s ring plane, permitting UVIS to obtain a number of short movies of the rotating auroral structures. In some movies a cusp-like feature is present near noon inside the oval. One movie from 2008 day 201 shows parallel linear features on the day side almost at right angles to the main auroral oval that appear, then lengthen, separate in the middle, and then fade away. The same movie also shows one bright "polar flare" inside the oval. A few of the most recent images were obtained at sufficiently close range that 2 spacecraft slews were needed to completely cover the oval. These images provide almost 100 pixels of information across the oval and clearly show multiple arcs of emission on the main oval and scattered emissions inside the oval. We will discuss these features, their locations, and possible interpretations. We also report on a search for an Enceladus auroral footprint on Saturn

    Nitric oxide nightglow and Martian mesospheric circulation from MAVEN/IUVS observations and LMD-MGCM predictions

    No full text
    International audienceWe report results from a study of nitric oxide nightglow over the northern hemisphere of Mars during winter, the southern hemisphere during fall equinox and equatorial latitudes during summer in the northern hemisphere based on observations of the δ and γ bands between 190 and 270 nm by the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft. The emission reveals recombination of N and O atoms dissociated on the dayside of Mars and transported to the nightside. We characterize the brightness (from 0.2 to 30 kR) and altitude (from 40 to 115 km) of the NO nightglow layer, as well as its topside scale height (mean of 11 km). We show the possible impact of atmospheric waves forcing longitudinal variability, associated with an increased brightness by a factor 3 in the 140 - 200∘ longitude region in the northern hemisphere winter and in the -102∘ to -48∘ longitude region at summer. Such impact to the NO nightglow at Mars was not seen before. Quantitative comparison with calculations of the LMD-MGCM (Laboratoire de Météorologie Dynamique - Global Circulation Model) suggests that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation, but also indicates large discrepancies (up to a factor 50 fainter in the model) in northern winter at low to mid-latitudes. This suggests that the predicted transport is too efficient towards the night winter pole in the thermosphere by ∼20∘ latitude north

    Venus express: Highlights of the nominal mission

    Get PDF
    Venus Express is the first European (ESA) mission to the planet Venus. Its main science goal is to carry out a global survey of the atmosphere, the plasma environment, and the surface of Venus from orbit. The payload consists of seven experiments. It includes a powerful suite of remote sensing imagers and spectrometers, instruments for in-situ investigation of the circumplanetary plasma and magnetic field, and a radio science experiment. The spacecraft, based on the Mars Express bus modified for the conditions at Venus, provides a versatile platform for nadir and limb observations as well as solar, stellar, and radio occultations. In April 2006 Venus Express was inserted in an elliptical polar orbit around Venus, with a pericentre height of Ë 250 km and apocentre distance of Ë 66000 km and an orbital period of 24 hours. The nominal mission lasted from June 4, 2006 till October 2, 2007, which corresponds to about two Venus sidereal days. Here we present an overview of the main results of the nominal mission, based on a set of papers recently published in Nature, Icarus, Planetary and Space Science, and Geophysical Research Letters

    Elektrokrampftherapie

    No full text
    corecore