491 research outputs found

    Ecotourism and Economic Growth in the Galapagos: An Island Economy-wide Analysis

    Get PDF
    This paper raises questions about the compatibility of "ecotourism and conservation in the unique environment of the Galapagos Islands. It updates a 1999 economy-wide analysis that predicted that increases in tourism would result in rapid economic as well as demographic growth on the islands. The following six years witnessed sharp growth in tourism; a restructuring of tourism around larger cruise ships and new, larger hotels; and rapid population growth. Our findings indicate that total income (that is, the gross domestic product) of the Galapagos increased by an estimated 78% between 1999 and 2005, placing Galapagos among the fastest growing economies in the world. Tourism continues to be far and away the major driver of economic growth; however, new injections of all sorts of spending, including by government, commercial fishing, and conservation agencies, have had a multiplier effect on income in the Galapagos economy, and as a result, on population growth, via uncontrolled immigration that is theoretically prohibited by the Special Law of the Galapagos to prevent ecological harm to the islands. Further, immigration has diminished the effect of economic growth on household income, creating political pressure to find even more economic development options for Galapagos residents, including commercial fishing. The linkage between economic growth, led by tourism or any other sector, and environmental protection of the Galapagos should be taken seriously when designing and implementing economic development and conservation programs.Resource /Energy Economics and Policy,

    Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes

    Get PDF
    Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~ 50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~ 10 mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~ 20 mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2–3 mg per day (~ 40–60 mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4 mg/mL] or a water control, with treatments yielding average daily intakes of ~ 50 mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)—which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking—and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis in the cerebellum. The lack of beneficial therapeutic behavioral effects and potentially detrimental skeletal effects of EGCG found in Ts65Dn mice emphasize the importance of identifying dosages of EGCG that reliably improve DS phenotypes and linking those effects to actions of EGCG (or EGCG-containing supplements) in specific targets in brain and bone

    Coulomb interaction-driven entanglement of electrons on helium

    Full text link
    The generation and evolution of entanglement in quantum many-body systems is an active area of research that spans multiple fields, from quantum information science to the simulation of quantum many-body systems encountered in condensed matter, subatomic physics, and quantum chemistry. Motivated by recent experiments exploring quantum information processing systems with electrons trapped above the surface of cryogenic noble gas substrates, we theoretically investigate the generation of \emph{motional} entanglement between two electrons via their unscreened Coulomb interaction. The model system consists of two electrons confined in separate electrostatic traps which establish microwave frequency quantized states of their motion. We compute the motional energy spectra of the electrons, as well as their entanglement, by diagonalizing the model Hamiltonian with respect to a single-particle Hartree product basis. This computational procedure can in turn be employed for device design and guidance of experimental implementations. In particular, the theoretical tools developed here can be used for fine tuning and optimization of control parameters in future experiments with electrons trapped above the surface of superfluid helium or solid neon.Comment: Revised figures and discussion

    Unusually Deep Wintertime Cirrus Clouds Observed over the Alaskan Sub-Arctic

    Get PDF
    Unusually deep wintertime cirrus clouds at altitudes exceeding 13.0 km above mean sea level (AMSL) were observed at Fairbanks, Alaska (64.86 N, 147.85 W, 0.300 km AMSL) over a twelve hour period, beginning near 1200 UTC 1 January 2017. Such elevated cirrus cloud heights are far more typical of warmer latitudes, and in many instances associated with convective outflow, as opposed to early winter over the sub-Arctic on a day featuring barely four hours of local sunlight. In any other context, they could have been confused for polar stratospheric clouds, which are a more common regional/seasonal occurrence at elevated heights. The mechanics of this unique event are documented, including the thermodynamic and synoptic environments that nurtured and sustained cloud formation. The impact of an unusually deep and broad anticyclone over the wintertime Alaskan sub-Arctic is described. Comparisons with climatological datasets illustrate how unusual these events are regionally and seasonally. The event proves a relatively uncharacteristic confluence of circulatory and dynamic features over the wintertime Alaskan sub-Arctic. Our goal is to document the occurrence of this event within the context of a growing understanding for how cirrus cloud incidence and their physical characteristics vary globally. Cirrus clouds are unique within the earth-atmosphere system. Formed by the freezing of submicron haze particles in the upper troposphere, they are the last primary cloud mechanism contributing to the large scale exchange of the terrestrial water cycle. Accordingly, cirrus clouds are observed globally at all times of the year, exhibiting an instantaneous global occurrence rate near 40%. Radiatively, however, they are even more distinct. During daylight hours, cirrus are the only cloud genus that can induce either positive or negative top-of-the-atmosphere forcing (i.e., heating or cooling; all other clouds induce a negative sunlit cooling effect). Though diffuse compared with low-level liquid water clouds, their significance radiatively and thus within climate, is borne out of their overwhelming relative occurrence rate. This emerging recognition makes understanding cirrus cloud occurrence and physical cloud properties an innovative and exciting element of current climate study. The observations described here contribute to this knowledge, and the apparent potential for anomalous wintertime radiative characteristics exhibited along sub-Arctic latitudes

    Hilbert Expansion from the Boltzmann equation to relativistic Fluids

    Get PDF
    We study the local-in-time hydrodynamic limit of the relativistic Boltzmann equation using a Hilbert expansion. More specifically, we prove the existence of local solutions to the relativistic Boltzmann equation that are nearby the local relativistic Maxwellian constructed from a class of solutions to the relativistic Euler equations that includes a large subclass of near-constant, non-vacuum fluid states. In particular, for small Knudsen number, these solutions to the relativistic Boltzmann equation have dynamics that are effectively captured by corresponding solutions to the relativistic Euler equations.Comment: 50 page
    corecore