101 research outputs found

    Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies.

    Get PDF
    BACKGROUND: Untargeted mass spectrometry (MS)-based metabolomics data often contain missing values that reduce statistical power and can introduce bias in biomedical studies. However, a systematic assessment of the various sources of missing values and strategies to handle these data has received little attention. Missing data can occur systematically, e.g. from run day-dependent effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of sample preparation. METHODS: We investigated patterns of missing data in an MS-based metabolomics experiment of serum samples from the German KORA F4 cohort (n = 1750). We then evaluated 31 imputation methods in a simulation framework and biologically validated the results by applying all imputation approaches to real metabolomics data. We examined the ability of each method to reconstruct biochemical pathways from data-driven correlation networks, and the ability of the method to increase statistical power while preserving the strength of established metabolic quantitative trait loci. RESULTS: Run day-dependent LOD-based missing data accounts for most missing values in the metabolomics dataset. Although multiple imputation by chained equations performed well in many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) imputation on observations with variable pre-selection showed robust performance across all evaluation schemes and is computationally more tractable. CONCLUSION: Missing data in untargeted MS-based metabolomics data occur for various reasons. Based on our results, we recommend that KNN-based imputation is performed on observations with variable pre-selection since it showed robust results in all evaluation schemes.This work was supported by grants from the German Federal Ministry of Education and Research (BMBF), by BMBF Grant No. 01ZX1313C (project e:Athero-MED) and Grant No. 03IS2061B (project Gani_Med). Moreover, the research leading to these results has received funding from the European Union’s Seventh Framework Programme [FP7-Health-F5-2012] under grant agreement No. 305280 (MIMOmics) and from the European Research Council (starting grant “LatentCauses”). KS is supported by Biomedical Research Program funds at Weill Cornell Medical College in Qatar, a program funded by the Qatar Foundation. The KORA Augsburg studies were financed by the Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany and supported by grants from the German Federal Ministry of Education and Research (BMBF). Analyses in the EPIC-Norfolk study were supported by funding from the Medical Research Council (MC_PC_13048 and MC_UU_12015/1)

    Association of Genetic Variants Related to Gluteofemoral vs Abdominal Fat Distribution With Type 2 Diabetes, Coronary Disease, and Cardiovascular Risk Factors.

    Get PDF
    IMPORTANCE: Body fat distribution, usually measured using waist-to-hip ratio (WHR), is an important contributor to cardiometabolic disease independent of body mass index (BMI). Whether mechanisms that increase WHR via lower gluteofemoral (hip) or via higher abdominal (waist) fat distribution affect cardiometabolic risk is unknown. OBJECTIVE: To identify genetic variants associated with higher WHR specifically via lower gluteofemoral or higher abdominal fat distribution and estimate their association with cardiometabolic risk. DESIGN, SETTING, AND PARTICIPANTS: Genome-wide association studies (GWAS) for WHR combined data from the UK Biobank cohort and summary statistics from previous GWAS (data collection: 2006-2018). Specific polygenic scores for higher WHR via lower gluteofemoral or via higher abdominal fat distribution were derived using WHR-associated genetic variants showing specific association with hip or waist circumference. Associations of polygenic scores with outcomes were estimated in 3 population-based cohorts, a case-cohort study, and summary statistics from 6 GWAS (data collection: 1991-2018). EXPOSURES: More than 2.4 million common genetic variants (GWAS); polygenic scores for higher WHR (follow-up analyses). MAIN OUTCOMES AND MEASURES: BMI-adjusted WHR and unadjusted WHR (GWAS); compartmental fat mass measured by dual-energy x-ray absorptiometry, systolic and diastolic blood pressure, low-density lipoprotein cholesterol, triglycerides, fasting glucose, fasting insulin, type 2 diabetes, and coronary disease risk (follow-up analyses). RESULTS: Among 452 302 UK Biobank participants of European ancestry, the mean (SD) age was 57 (8) years and the mean (SD) WHR was 0.87 (0.09). In genome-wide analyses, 202 independent genetic variants were associated with higher BMI-adjusted WHR (n = 660 648) and unadjusted WHR (n = 663 598). In dual-energy x-ray absorptiometry analyses (n = 18 330), the hip- and waist-specific polygenic scores for higher WHR were specifically associated with lower gluteofemoral and higher abdominal fat, respectively. In follow-up analyses (n = 636 607), both polygenic scores were associated with higher blood pressure and triglyceride levels and higher risk of diabetes (waist-specific score: odds ratio [OR], 1.57 [95% CI, 1.34-1.83], absolute risk increase per 1000 participant-years [ARI], 4.4 [95% CI, 2.7-6.5], P < .001; hip-specific score: OR, 2.54 [95% CI, 2.17-2.96], ARI, 12.0 [95% CI, 9.1-15.3], P < .001) and coronary disease (waist-specific score: OR, 1.60 [95% CI, 1.39-1.84], ARI, 2.3 [95% CI, 1.5-3.3], P < .001; hip-specific score: OR, 1.76 [95% CI, 1.53-2.02], ARI, 3.0 [95% CI, 2.1-4.0], P < .001), per 1-SD increase in BMI-adjusted WHR. CONCLUSIONS AND RELEVANCE: Distinct genetic mechanisms may be linked to gluteofemoral and abdominal fat distribution that are the basis for the calculation of the WHR. These findings may improve risk assessment and treatment of diabetes and coronary disease.This study was funded by the United Kingdom’s Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1. This work was supported by the MRC Metabolic Diseases Unit (MC_UU_12012/5) and the Cambridge NIHR Biomedical Research Centre and EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant: 115372). EPIC-InterAct Study funding: funding for the InterAct project was provided by the EU FP6 program (grant number LSHM_CT_2006_037197). D.B.S. and S.O’R. are supported by the Wellcome Trust (WT107064 and WT095515 respectively) the MRC Metabolic Disease Unit, the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre and the NIHR Rare Disease Translational Research Collaboration

    Assessing the causal association of glycine with risk of cardio-metabolic diseases.

    Get PDF
    Circulating levels of glycine have previously been associated with lower incidence of coronary heart disease (CHD) and type 2 diabetes (T2D) but it remains uncertain if glycine plays an aetiological role. We present a meta-analysis of genome-wide association studies for glycine in 80,003 participants and investigate the causality and potential mechanisms of the association between glycine and cardio-metabolic diseases using genetic approaches. We identify 27 genetic loci, of which 22 have not previously been reported for glycine. We show that glycine is genetically associated with lower CHD risk and find that this may be partly driven by blood pressure. Evidence for a genetic association of glycine with T2D is weaker, but we find a strong inverse genetic effect of hyperinsulinaemia on glycine. Our findings strengthen evidence for a protective effect of glycine on CHD and show that the glycine-T2D association may be driven by a glycine-lowering effect of insulin resistance.N. G. F. and F.I. acknowledge funding from Medical Research Council Epidemiology Unit MC_UU_12015/5. N.G.F. and N. J. W. acknowledge funding from the NIHR Biomedical Research Centre Cambridge: Nutrition, Diet, and Lifestyle Research Theme (IS-BRC-1215-20014). S. B. is supported by Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (204623/Z/16/Z). J. D. is funded by the National Institute for Health Research [Senior Investigator Award]. N. J. W. and C. L. acknowledge funding from the Medical Research Council Epidemiology Unit (MC_UU_12015/1)

    Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals

    Get PDF
    Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to ~1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency ≤ 0.01) variant BP associations (P < 5 × 10−8), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were ~8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets. © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. There are 286 authors of this articles not all are listed in this record

    Epigenome-Wide Association Study of Incident Type 2 Diabetes in a British Population: EPIC-Norfolk Study.

    Get PDF
    Epigenetic changes may contribute substantially to risks of diseases of aging. Previous studies reported seven methylation variable positions (MVPs) robustly associated with incident type 2 diabetes mellitus (T2DM). However, their causal roles in T2DM are unclear. In an incident T2DM case-cohort study nested within the population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, we used whole blood DNA collected at baseline, up to 11 years before T2DM onset, to investigate the role of methylation in the etiology of T2DM. We identified 15 novel MVPs with robust associations with incident T2DM and robustly confirmed three MVPs identified previously (near to TXNIP, ABCG1, and SREBF1). All 18 MVPs showed directionally consistent associations with incident and prevalent T2DM in independent studies. Further conditional analyses suggested that the identified epigenetic signals appear related to T2DM via glucose and obesity-related pathways acting before the collection of baseline samples. We integrated genome-wide genetic data to identify methylation-associated quantitative trait loci robustly associated with 16 of the 18 MVPs and found one MVP, cg00574958 at CPT1A, with a possible direct causal role in T2DM. None of the implicated genes were previously highlighted by genetic association studies, suggesting that DNA methylation studies may reveal novel biological mechanisms involved in tissue responses to glycemia

    Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson's Disease.

    Get PDF
    Parkinson's disease (PD) exhibits systemic effects on the human metabolism, with emerging roles for the gut microbiome. Here, we integrate longitudinal metabolome data from 30 drug-naive, de novo PD patients and 30 matched controls with constraint-based modeling of gut microbial communities derived from an independent, drug-naive PD cohort, and prospective data from the general population. Our key results are (1) longitudinal trajectory of metabolites associated with the interconversion of methionine and cysteine via cystathionine differed between PD patients and controls; (2) dopaminergic medication showed strong lipidomic signatures; (3) taurine-conjugated bile acids correlated with the severity of motor symptoms, while low levels of sulfated taurolithocholate were associated with PD incidence in the general population; and (4) computational modeling predicted changes in sulfur metabolism, driven by A. muciniphila and B. wadsworthia, which is consistent with the changed metabolome. The multi-omics integration reveals PD-specific patterns in microbial-host sulfur co-metabolism that may contribute to PD severity

    Circulating metabolites modulated by diet are associated with depression

    Get PDF
    Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression. In a conservative model adjusting for life style factors and cardiovascular and antidepressant medication use we identified 8 metabolites, including 6 novel, significantly associated with depression. In individuals with depression, increased levels of retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA (18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either directly food derived or are products of host and gut microbial metabolism of food-derived products. Our Mendelian randomization analysis suggests that low hippurate levels may be in the causal pathway leading towards depression. Our findings highlight putative actionable targets for depression prevention that are easily modifiable through diet interventions.</p
    corecore