1,252 research outputs found

    A comparison of airborne wake vortex detection measurements with values predicted from potential theory

    Get PDF
    An analysis of flight measurements made near a wake vortex was conducted to explore the feasibility of providing a pilot with useful wake avoidance information. The measurements were made with relatively low cost flow and motion sensors on a light airplane flying near the wake vortex of a turboprop airplane weighing approximately 90000 lbs. Algorithms were developed which removed the response of the airplane to control inputs from the total airplane response and produced parameters which were due solely to the flow field of the vortex. These parameters were compared with values predicted by potential theory. The results indicated that the presence of the vortex could be detected by a combination of parameters derived from the simple sensors. However, the location and strength of the vortex cannot be determined without additional and more accurate sensors

    A Piloted Simulator Evaluation of Transport Aircraft Rudder Pedal Force/Feel Characteristics

    Get PDF
    A piloted simulation study has been conducted in a fixed-base research simulator to assess the directional handling qualities for various rudder pedal feel characteristics for commercial transport airplanes. That is, the effects of static pedal force at maximum pedal travel, breakout force, and maximum pedal travel on handling qualities were studied. An artificial maneuver with a severe lateral wind shear and requiring runway tracking at an altitude of 50 feet in a crosswind was used to fully exercise the rudder pedals. Twelve active airline pilots voluntarily participated in the study and flew approximately 500 maneuvers. The pilots rated the maneuver performance with various rudder pedal feel characteristics using the Cooper- Harper rating scale. The test matrix had 15 unique combinations of the 3 static pedal feel characteristics. A 10-term, second-order equation for the Cooper-Harper pilot rating as a function of the 3 independent pedal feel parameters was fit to the data. The test matrix utilized a Central Composite Design that is very efficient for fitting an equation of this form. The equation was used to produce contour plots of constant pilot ratings as a function of two of the parameters with the third parameter held constant. These contour plots showed regions of good handling qualities as well as regions of degraded handling qualities. In addition, a numerical equation solver was used to predict the optimum parameter values (those with the lowest pilot rating). Quantitative pilot performance data were also analyzed. This analysis found that the peak values of the cross power spectra of the pedal force and heading angle could be used to quantify the tendency toward directional pilot induced oscillations (PIO). Larger peak values of the cross power spectra were correlated with larger (degraded) Cooper-Harper pilot ratings. Thus, the subjective data (Cooper-Harper pilot ratings) were consistent with the objective data (peak values of the cross power spectra)

    A simulation study of control and display requirements for zero-experience general aviation pilots

    Get PDF
    The purpose of this simulation study was to define the basic human factor requirements for operating an airplane in all weather conditions. The basic human factors requirements are defined as those for an operator who is a complete novice for airplane operations but who is assumed to have automobile driving experience. These operators thus have had no piloting experience or training of any kind. The human factor requirements are developed for a practical task which includes all of the basic maneuvers required to go from one airport to another airport in limited visibility conditions. The task was quite demanding including following a precise path with climbing and descending turns while simultaneously changing airspeed. The ultimate goal of this research is to increase the utility of general aviation airplanes - that is, to make them a practical mode of transportation for a much larger segment of the general population. This can be accomplished by reducing the training and proficiency requirements of pilots while improving the level of safety. It is believed that advanced technologies such as fly-by-wire (or light), and head-up pictorial displays can be of much greater benefit to the general aviation pilot than to the full-time, professional pilot

    High visibility two photon interference of frequency time entangled photons generated in a quasi phase matched AlGaAs waveguide

    Full text link
    We demonstrate experimentally the frequency time entanglement of photon pairs produced in a CW pumped quasi phased matched AlGaAs superlattice waveguide. A visibility of 96.0+-0.7% without background subtraction has been achieved, which corresponds the violation of Bell inequality by 52 standard deviations

    Applications of Phase-Based Motion Processing

    Get PDF
    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB

    An Evaluation of the Measurement Requirements for an In-Situ Wake Vortex Detection System

    Get PDF
    Results of a numerical simulation are presented to determine the feasibility of estimating the location and strength of a wake vortex from imperfect in-situ measurements. These estimates could be used to provide information to a pilot on how to avoid a hazardous wake vortex encounter. An iterative algorithm based on the method of secants was used to solve the four simultaneous equations describing the two-dimensional flow field around a pair of parallel counter-rotating vortices of equal and constant strength. The flow field information used by the algorithm could be derived from measurements from flow angle sensors mounted on the wing-tip of the detecting aircraft and an inertial navigation system. The study determined the propagated errors in the estimated location and strength of the vortex which resulted from random errors added to theoretically perfect measurements. The results are summarized in a series of charts and a table which make it possible to estimate these propagated errors for many practical situations. The situations include several generator-detector airplane combinations, different distances between the vortex and the detector airplane, as well as different levels of total measurement error

    Rates of erosion and landscape change along the Blue Ridge escarpment, southern Appalachian Mountains, estimated from in situ cosmogenic 10Be

    Get PDF
    The Blue Ridge escarpment, located within the southern Appalachian Mountains of Virginia and North Carolina, forms a distinct, steep boundary between the lower-elevation Piedmont and higher-elevation Blue Ridge physiographic provinces. To understand better the rate at which this landform and the adjacent landscape are changing, we measured cosmogenic 10Be in quartz separated from sediment samples (n = 50) collected in thirty-two streams and from three exposed bedrock outcrops along four transects normal to the escarpment, allowing us to calculate erosion rates integrated over 104–105 years. These basin-averaged erosion rates (5.4–49 m My-1) are consistent with those measured elsewhere in the southern Appalachians and show a positive relationship between erosion rate and average basin slope. Erosion rates show no relationship with basin size or relative position of the Brevard fault zone, a fundamental structural element of the region. The cosmogenic isotopic data, when considered along with the distribution of average basin slopes in each physiographic province, suggest that the escarpment is eroding on average more rapidly than the Blue Ridge uplands, which are eroding more rapidly than the Piedmont lowlands. This difference in erosion rates by geomorphic setting suggests that the elevation difference between the uplands and lowlands adjacent to the escarpment is being reduced but at extremely slow rates

    Improving Accuracy of Structural Dynamic Modification with Augmented Residual Vectors

    Get PDF
    It is often important to perform sensitivity analysis to determine how a structural model will be impacted by design changes. Often, the structural analysts will manually make changes to the finite element model (FEM) to determine the effects. But when dealing with a large FEM with millions of degrees of freedom these manual changes can be cumbersome and calculation of the effects can computationally expensive. Therefore, it is desirable to determine the effects of model changes through approximation methods. One common technique is to determine the analytical sensitivity of the FEM model with respect to the given change. These analytical sensitivities are valid when small changes are made to the structural model, but invalid if large changes need to be assessed. Another approach is to use Structural Dynamic Modification (SDM) to create a surrogate model to analyze model changes. SDM is a widely-used sensitivity method and is used in applications of model updating, uncertainty quantification, and model design studies. SMD is valid for moderate (10-20 percent) changes in the structural model, but model approximations are often needed for large parameter changes (greater than 20 percent). Structural Dynamic Modification can be improved by using residual vectors to augment the surrogate model formulation from SDM. Adding the residual modes increases the fidelity of the surrogate model while keeping the computational cost low. This paper discusses the application and limitations of the augmented residual modes method to two structures: the Integrated Spacecraft and Payload Element (ISPE) of the Space Launch System (SLS) and the full SLS as it is configured during its Integrated Modal Test (IMT)

    Quantification of Dynamic Model Validation Metrics Using Uncertainty Propagation from Requirements

    Get PDF
    The Space Launch System, NASA's new large launch vehicle for long range space exploration, is presently in the final design and construction phases, with the first launch scheduled for 2019. A dynamic model of the system has been created and is critical for calculation of interface loads and natural frequencies and mode shapes for guidance, navigation, and control (GNC). Because of the program and schedule constraints, a single modal test of the SLS will be performed while bolted down to the Mobile Launch Pad just before the first launch. A Monte Carlo and optimization scheme will be performed to create thousands of possible models based on given dispersions in model properties and to determine which model best fits the natural frequencies and mode shapes from modal test. However, the question still remains as to whether this model is acceptable for the loads and GNC requirements. An uncertainty propagation and quantification (UP and UQ) technique to develop a quantitative set of validation metrics that is based on the flight requirements has therefore been developed and is discussed in this paper. There has been considerable research on UQ and UP and validation in the literature, but very little on propagating the uncertainties from requirements, so most validation metrics are "rules-of-thumb;" this research seeks to come up with more reason-based metrics. One of the main assumptions used to achieve this task is that the uncertainty in the modeling of the fixed boundary condition is accurate, so therefore that same uncertainty can be used in propagating the fixed-test configuration to the free-free actual configuration. The second main technique applied here is the usage of the limit-state formulation to quantify the final probabilistic parameters and to compare them with the requirements. These techniques are explored with a simple lumped spring-mass system and a simplified SLS model. When completed, it is anticipated that this requirements-based validation metric will provide a quantified confidence and probability of success for the final SLS dynamics model, which will be critical for a successful launch program, and can be applied in the many other industries where an accurate dynamic model is required

    Overview of the preparation and use of an OV-10 aircraft for wake vortex hazards flight experiments

    Get PDF
    An overview is presented of the development, use, and current flight-test status of a highly instrumented North American Rockwell OV-10A Bronco as a wake-vortex-hazards research aircraft. A description of the operational requirements and measurements criteria, the resulting instrumentation systems and aircraft modifications, system-calibration and research flights completed to date, and current flight status are included. These experiments are being conducted by the National Aeronautics and Space Administration as part of an effort to provide the technology to safely improve the capacity of the nation's air transportation system and specifically to provide key data in understanding and predicting wake vortex decay, transport characteristics, and the dynamics of encountering wake turbulence. The OV-10A performs several roles including meteorological measurements platform, wake-decay quantifier, and trajectory-quantifier for wake encounters. Extensive research instrumentation systems include multiple airdata sensors, video cameras with cockpit displays, aircraft state and control-position measurements, inertial aircraft-position measurements, meteorological measurements, and an on-board personal computer for real-time processing and cockpit display of research data. To date, several of the preliminary system check flights and two meteorological-measurements deployments have been completed. Several wake encounter and wake-decay-measurements flights are planned for the fall of 1995
    • …
    corecore