
 

 

  

Quantification of Dynamic Model Validation Metrics using Uncertainty 

Propagation from Requirements 

 
 

 

Andrew M. Brown, Ph.D.a , Jeffrey A. Peckb, Eric C. Stewart, Ph.D.c 

 
a Aerospace Engineer, NASA/Marshall Space Flight Center, ER41/Propulsion  

Structural & Dynamic Analysis, Huntsville, AL 35812 
bAerospace Engineer, NASA/Marshall Space Flight Center, EV31/Vehicle  

Dynamics, Loads, and Strength Analysis, Huntsville, AL 35812 
c Aerospace Engineer, NASA/Marshall Space Flight Center, EV31/Vehicle  

Dynamics, Loads, and Strength Analysis, Huntsville, AL 35812 

 
 

 

ABSTRACT 

The Space Launch System, NASA’s new large launch vehicle for long range space exploration, is presently in the 

final design and construction phases, with the first launch scheduled for 2019.  A dynamic model of the system has 

been created and is critical for calculation of interface loads and natural frequencies and mode shapes for guidance, 

navigation, and control (GNC).  Because of the program and schedule constraints, a single modal test of the SLS 

will be performed while bolted down to the Mobile Launch Pad just before the first launch.  A Monte Carlo and 

optimization scheme will be performed to create thousands of possible models based on given dispersions in model 

properties and to determine which model best fits the natural frequencies and mode shapes from modal test.  

However, the question still remains as to whether this model is acceptable for the loads and GNC requirements.  An 

uncertainty propagation and quantification (UP and UQ) technique to develop a quantitative set of validation metrics 

that is based on the flight requirements has therefore been developed and is discussed in this paper.  There has been 

considerable research on UQ and UP and validation in the literature, but very little on propagating the uncertainties 

from requirements, so most validation metrics are “rules-of-thumb;” this research seeks to come up with more 

reason-based metrics.  One of the main assumptions used to achieve this task is that the uncertainty in the modeling 

of the fixed boundary condition is accurate, so therefore that same uncertainty can be used in propagating the fixed-

test configuration to the free-free actual configuration.  The second main technique applied here is the usage of the 

limit-state formulation to quantify the final probabilistic parameters and to compare them with the requirements.  

These techniques are explored with a simple lumped spring-mass system and a simplified SLS model.  When 

completed, it is anticipated that this requirements-based validation metric will provide a quantified confidence and 

probability of success for the final SLS dynamics model, which will be critical for a successful launch program, and 

can be applied in the many other industries where an accurate dynamic model is required. 
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NOMENCLATURE 

BME  Best Model Estimate 

DOF  Degree-of-Freedom 

FEM  Finite Element Model 

GNC  Guidance, Navigation, & Control 

IMT  Integrated Modal Test 

ML  Mobile Launcher  

PDF  Probability Density Function 

rv  random variable 

SLS  Space Launch System 

SRB  Solid Rocket Booster 

UQ, UP  Uncertainty Quantification and Propagation 

 

INTRODUCTION 

NASA is developing the Space Launch System (SLS) as the first manned extra-orbital vehicle since the Apollo 

program.  Briefly, the system consists of a Core Stage consisting of a liquid hydrogen and oxygen tank and four RS-

25 liquid rocket engines; a second stage powered by one RL-10 engines; the manned Orion capsule and command 

module upper stage; and two advance Solid Rocket Boosters (SRB) attached to the sides of the core stage (see figure 

1).  As with any launch vehicle, the structural dynamics finite element model (FEM) is vitally important for a 

number of reasons.  First, the dynamic model is critical for the successful design of a safe guidance, navigation, and 

control (GNC) system, since in-flight vectoring of the propulsion system must be consistent with system mode 

shapes.  Second, the dynamic model is the central basis for the determination of dynamic loads as they propagate 

from numerous sources at all phases of the mission, which are used for strength analysis throughout the vehicle.  

As the above factors are well-recognized, modal testing of launch vehicle systems has always been a requirement for 

space flight.  However, determining the details of this modal testing is problematic; there are many different 

configurations and system components to consider, and it is difficult to determine which configuration and which 

combination of components should be tested.  In recent years, for instance, the launch dynamics community has 

started moving away from traditional “full-up” modal testing of the entire system in favor of testing individual 

substructures (e.g., the SRB’s, the Core Stage, etc.) and then analytically tying the test-verified components 

together.  As far as testing the proper configuration, it is very difficult to devise a true “flight” configuration, as this 

would involve devising accurate free-free boundary conditions and would require loading of the propellants into the 

fuel tanks, which would be dangerous and extremely costly. 

 

Fig. 1 Space Launch System Block I Configuration and mounted on Mobile Launcher 



The SLS program has made several decisions regarding the above issues.  First, the primary modal test of the system 

(called the Integrated Modal Test, or IMT) will be with the empty SLS mounted on the Mobile Launcher (ML), 

which itself is a complex structure.  The validation of the SLS flight model will be achieved using a probabilistic 

optimization technique defined as the “Best Model Estimate (BME)” method developed by Stewart [1]. Since the 

IMT is scheduled for only a couple of months before the first SLS launch, the BME method uses a Monte Carlo 

analysis of a large pre-determined set of potential SLS models using probabilistic dispersions of primitive geometric 

variables in the finite element model.  Once the IMT is performed, each Monte Carlo sample is compared with the 

natural frequency and mode shape results, and a Pareto Front is created that identifies the “best model.” 

Although a best model would be created, though, no criteria had been established for whether that model was 

actually accurate enough to be acceptable for the applications to GNC and loads.   Although typical model 

correlation criteria such as “less than 10% variation in natural frequency” and “greater than 0.9 on the Modal 

Assurance Criteria diagonal” could be applied, these are not tied to the dynamic model requirements. 

An effort was therefore initiated to develop a technique that uses the requirements for the dynamic model to 

generate the metrics for its acceptability.  For example, the GNC community has a guideline that says the post-test 

modeled first bending mode flight frequency must be no less than -3% of the pre-test model first bending mode. The 

first bending mode can increase in frequency from the pre-test to post-test models with little impact on the GNC 

community, so no guidelines exist for that case.  Although there are other important applications for the dynamic 

model, it is believed that the GNC requirement is the most stringent and provides a clear metric to be met prior to 

flight.  A technique has therefore been developed to address the need for model acceptability metrics and is 

described in this document; as this is a work-in-progress, the technique has only been implemented on simplified 

systems and so this paper should be considered an “extended abstract” rather than as a paper with fully-vetted 

results.  Nevertheless, the technique is unique as a “requirements-based metric” so publication at this time should be 

valuable to the dynamics community. 

 

LITERATURE SURVEY 

There has been substantial work in the literature on uncertainty quantification and propagation (UQ, UP), but little 

on the reverse propagation that is needed for establishment of the desired metric. Hasselman has published a great 

deal in this area, including papers on structural dynamics model accuracy[2] and on UQ, focusing on quantifying 

and propagating structural dynamic model uncertainty using modal test [3], [4].  His UQ papers describe a rigorous 

methodology using the system frequency response functions as well as mass and stiffness matrices, and the use of a 

proprietary software code for implementation.  Chen in 2004 laid out a step-by-step process for model validation 

using uncertainty propagation that does have elements considered useful for this research [5].  A metamodel, or 

Response Surface Model, is used as a surrogate for the original numerical model to enable large sample Monte Carlo 

simulation, and an assessment of model validity then is obtained by generating a probability density function (PDF) 

comparing the response and experiment, and identifying the “critical limit of confidence level where the physical 

experiment falls exactly at the boundary of the performance range obtained from the computer model.”  This process 

is very similar to that eventually chosen by the authors for this work.  Other valuable work in this field include a 

number of publications by Kammer that focus on quantifying the uncertainty propagation in substructures when they 

are coupled together into a system model [6]. 

 

METHODOLOGY 

The methodology here somewhat follows the procedure laid down by Chen by creating a limit state of the ratio of 

the modal test and model primary natural frequency.  Our interpretation of the GNC requirement is that the true 

frequency can be no less than a value that is 3% less than the pre-test prediction, which comes from the FEM. The 

performance limit-state ratio is applicable here, therefore, because we assume that the true value of the natural 

frequency lies within a statistical range defined by a mean equal to the test value obtained by the modal test and a 

distribution that is a function of sensor placement and other purely test-based errors.   



The other critical concept is an assumption that the statistical distribution of the relationships between the natural 

frequencies of the modelled ground-modal test model and flight model are accurate, so therefore that same 

uncertainty can be used in propagating the uncertainties in the actual ground modal test to what we call here a 

“pseudo-test” flight configuration.  This assumption requires that there is a clear shape equivalence between a 

ground-modal test mode and the critical flight mode upon which the requirement is levied.  If this is the case, we 

assume that the distribution of the ratio between the modeled flight configuration critical frequency and modeled 

fixed configuration equivalent modal frequency can also be used to relate the tested ground fixed configuration to 

the “pseudo-modal-tested” flight configuration, .i.e. 
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where {fgm} = vector of frequencies of shape equivalent mode from FEM of ground-modal-test, created using Monte 

Carlo with assumed statistical distributions of parameters; {ffm} = vector of frequencies of critical mode from flight 

FEM, created using Monte Carlo with assumed statistical distributions of structural parameters; {fgt} = vector of 

frequencies of shape equivalent mode from ground-modal-test, created using Monte Carlo with assumed statistical 

distributions of measurements; and {fft} = vector of frequencies of critical mode from flight configuration 

extrapolated from modal-test vector.   

Using these values, we then formulate the performance limit state as the ratio of the flight “test” frequency (which is 

really only a “pseudo-test”, and which we have defined to be the distribution about the true value) to the flight 

model frequency, and subtract 1.0 to calibrate it about zero 

𝑔 =
𝑓𝑓𝑡

𝑓𝑓𝑚
− 1 .    (2)  

The PDF of g can be generated directly from the random vectors, and can be integrated from -.03 to +∞ to obtain the 

probability of “success”, i.e., the probability that the model frequency is within the acceptable range of the critical 

true frequency.  If this probability is higher than the value determined by the program authority, the model is 

“acceptable.”  It should be noted that although this new metric is based on the physics of the problem, engineering 

judgment is still necessary to assess what level of success is adequate. 

 

EXAMPLES 

Two examples were created to flesh out the process and to more clearly identify the critical concepts and 

assumptions used.  The first example is a multi degree of freedom (DOF) lumped spring mass system developed and 

analyzed in Mathematica®, as shown in figure 2.  The “flight” configuration, which has free-free boundary 

conditions, is represented by substructure A, which includes the spring k1 to the boundary DOF,  while the “ground-

modal-test” configuration is simulated with an additional substructure B which is grounded.  It was initially thought 

that the ground test configuration could be represented by simple springs to ground, but it was then realized that 

since the ground-test fixture was the entire Mobile Launcher (ML, see figure 1), which possesses its own complex 

structural dynamics, representation by a mere stiffness (or even a number of springs) could not be used.  We let all 

the springs in the system be random variables (rv’s) representing modeling, material, and other uncertainties, and 

assign distribution types, means and standard deviations to each rv.  A 10,000 sample Monte Carlo analysis is then 

performed to obtain random vectors of the model fixed first frequency f1gm and the model free-free second 

frequency f2fm (first flexible mode), using the same sample sets for the shared rv’s in substructure A. 

At this point a modal test is assumed to be performed on the entire “ground-test-configuration” and the fundamental 

frequency is obtained.  As described previously, due to sensor placement, measurement and other testing errors, it is 

assumed that this value would be within the range of the true value of this frequency established by the distributions 



on these errors.  For this MDOF system, we assume these errors follow a normal distribution about the mean, which 

will be the result from the modal test, and possess a 2% coefficient of variation.  We now use the previous vector of 

ratios of the “flight” model to the “ground-modal-test” model to extrapolate the "tested" flight frequencies from the 

tested ground frequencies, i.e., a “pseudo flight-test configuration". 

We now create the limit state as the ratio of the flight “test” frequency (which is really only a “pseudo-test”) to the 

flight model frequency, and subtract 1.0 to calibrate it about zero.  For the values assumed in this example, the PDF 

of this limit state is shown in figure 3.     The probability of success is defined to be the integral under the PDF from 

-.03 to + infinity, and is 91.3% for this set of parameters. 

The second example is intended to be a simple but reasonable facsimile of the actual flight and ground-test 

configuration of the SLS (see figure 4).  Approximate lengths and masses were used for the entire system, and the 

parameters were tweaked to approximately obtain a match with the primary frequency of interest in the actual SLS, 

which is the third flexible mode at 1.22 hz (here we get 1.38 hz). This example allows experimentation with the 

various deterministic and probabilistic software packages necessary for the analysis of the true vehicle.  In addition, 

an additional non-structural mass was added to the “flight” configuration-only to represent the propellant mass.  A 

distribution is assigned to this parameter, but it has to be assumed that this distribution is correct as testing in the 

flight configuration isn’t possible. 

The same process as used for the MDOF lumped system was applied to this simplified SLS system model.  For this 

model, the Young’s moduli of the SLS core stage, the SRB, the hold-down posts on the ML pad, the ML pad plates, 

and the upper ML and lower ML main beams, and the propellant mass were established to be independent rv’s.  The 

probabilistic wrapper code LS-OPT is used to define the distributions of the random variables and to run NX-

Nastran jobs varying each of the parameters in a Monte Carlo analysis.  The analysis on the flight configuration is 

performed first, and the resulting vector of the primary bending mode natural frequencies saved.  The Monte Carlo 

rv sample set is also saved and the random variables shared with the ground test configuration (all of the SLS 

substructure except for the propellant) were reused along with the ML substructure rv’s in a Monte Carlo analysis of 

the ground-modal test configuration to obtain the appropriate bending mode closest to the flight mode of interest.  A 

chart output from LS-OPT showing the correlation of the response natural frequency to each of the input random 

variables is shown in Figure 5. 

Fig. 2 Discrete MDOF System Representing SLS Vehicle and Mobile Launcher 



 

Fig. 3 Example 1 a) PDF’s of model frequency (red) and test frequency (blue);  b) PDF of Limit State g with success 

defined by hatched area. 

 

Fig. 4  a) Entire simplified SLS model on Mobile Launcher; b) Upper ML substructure; c) Lower ML substructure; 

d) SLS substructure (and flight configuration when propellent mass added) 

The ratio for each sample from the two MC analyses is then calculated and imported into Mathematica, where the 

limit state PDF generated and a probability of success is calculated, shown in Figure 6.  In this case, the probability 

of “success” is only 61%.  Figures 5 and 6 introduce several questions which will need to be examined.  First, the 

correlation is almost non-existent between most of the random variables and the response variable, and only weak 

for one of them; this result indicates that the particular mode of interest is more a function of some other parameter 

that has not be accounted for. Secondly, looking at a variety of choices for the statistics of the random parameters in 

these examples, which at this point are completely arbitrary, various success rates point to the fact that the 

requirements will favor either an overestimation of the natural frequency rather than a more accurate estimation if 

there is substantial aleatory variability in the test or model, or a small variation in the model variability, which is 

expected.  This is indicated by examining the individual PDF’s of the “pseudo-test” versus “model” for the 

examples (figure 3a and 6a). 

 

 

 



 

Fig. 5 Correlation Matrix relating Random Variables with Response Variable, and showing Distributions 

FORWARD WORK AND CONCLUSION 

A major point of consideration identified is how to implement the random parameters.  We presently believe that 

“primitive” random variables that attempt to approximate actual material and stiffness variations in the structure will 

be implemented for the vehicle, but that more gross variations on the entire mass and stiffness matrices of the ML 

will be applied to avoid unnecessary complication; there is no need to perform an excessive amount of analysis on 

the ML as the only quantity of interest is how it affects the fundamental mode at the boundary with the SLS at the 

hold-down posts.  Another key avenue for investigation, as identified in the simplified SLS model case, is 

thoroughly understanding the sensitivity of the response variable to each of the random variables.  Special attention 

must be paid to accurately identify the statistical parameters of those input rv’s with the highest sensitivity.   Finally, 

an examination is also being undertaken to use techniques developed by Allen [7] to replace the modes of the entire 

system with purely fixed modes of the vehicle, which would simplify the uncertainty model significantly.    

After this decision is made, an attempt will be made to apply the process using the model and test results for the 

Ares I-X, a 2012 NASA test launch vehicle, to further identify adequacy of the technique.  If this is successful, the 

technique will be applied to SLS as planned with a final deadline in mid-2018.  Successful application of this 

technique would also be an important contribution to the development of metrics for dynamic models, and would 

mark one of the first attempts at using system requirements to develop these metrics. 
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Fig. 6  Example 2 a) PDF’s of model frequency (red) and test frequency (blue);  b) PDF of Limit State g with 

success defined by hatched area. 
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