6,774 research outputs found

    Comparison of hydroxyl radical formation in aqueous solutions at different ultrasound frequencies and powers using the salicylic acid dosimeter

    Get PDF
    Ultrasonic frequencies of 20 kHz, 382 kHz, 584 kHz, 862 kHz (and 998 kHz) have been compared with regard to energy output and hydroxyl radical formation utilising the salicylic acid dosimeter. The 862 kHz frequency inputs 6 times the number of Watts into water, as measured by calorimetry, with the other frequencies having roughly the same value under very similar conditions. A plausible explanation involving acoustic fountain formation is proposed although enhanced coupling between this frequency and water cannot be discounted. Using the salicylic acid dosimeter and inputting virtually the same Wattages it is established that 862 kHz is around 10% more efficient at generating hydroxyl radicals than the 382 kHz but both of these are far more effective than the other frequencies. Also, it is found that as temperature increases to 42 °C then the total dihydroxybenzoic acid (Total DHBA) produced is virtually identical for 382 kHz and 862 kHz, though 582 kHz is substantially lower, when the power levels are set at approximately 9 W for all systems. An equivalent power level of 9 W could not be obtained for the 998 kHz transducer so a direct comparison could not be made in this instance. These results have implications for the optimum frequencies chosen for both Advanced Oxidation Processes (AOPs) and organic synthesis augmented by ultrasound

    The Costs of Wrongful-Discharge Laws

    Get PDF
    We estimate the effects on employment and wages of wrongful-discharge protections in the United States. Over the last three decades, most U.S. state courts have adopted one or more common law wrongful discharge doctrines that limit employers' discretion to terminate workers at-will. Using this cross-state variation with a difference-in-difference framework, we find robust evidence of a modest negative impact ( 0.8 to 1.6 percentage points) of one wrongful-discharge doctrine, the implied-contract exception, on employment to population rates in state labor markets. The short-term impact is most pronounced for female, younger, and less-skilled workers, while the longer term costs appear to be borne by older and more-educated workers those most likely to litigate under this doctrine. We find no robust employment or wage effects of two other widely recognized wrongful-discharge laws: the public -policy and good-faith exceptions. Published findings in the literature range from no effect to very large negative effects. We reanalyze the two leading studies and find the discrepancies can be explained by methodological shortcomings in the one case and limitations in the coding of key court decisions in the other.

    Running-mass models of inflation, and their observational constraints

    Get PDF
    If the inflaton sector is described by softly broken supersymmetry, and the inflaton has unsuppressed couplings, the inflaton mass will run strongly with scale. Four types of model are possible. The prediction for the spectral index involves two parameters, while the COBE normalization involves a third, all of them calculable functions of the relevant masses and couplings. A crude estimate is made of the region of parameter space allowed by present observation.Comment: Latex file, 20 pages, 11 figures, uses epsf.sty. Comment on the observation of the spectral index scale dependence added; Fig. 3-6 improve

    Cytochrome b559 of photosystem II

    Get PDF
    Continua com: Anuari estadístic de la ciutat de BarcelonaDigitalitzat per Artypla

    Constraints on TeV-scale hybrid inflation and comments on non-hybrid alternatives

    Get PDF
    During hybrid inflation, the slowly-rolling inflaton field has a significant coupling to the trigger field which is responsible for most of the potential. Barring a fine-tuned accidental cancellation, this coupling induces a minimal one-loop contribution to the inflaton potential. The requirement that this contribution be not too large constrains a wide class of hybrid inflation models. Assuming that the inflaton perturbation generates structure in the Universe, the inflaton field and/or the trigger field after inflation have to be bigger than 10^9\GeV. This and other results make hybrid inflation at or below the TeV scale problematical. (There is no problem with hybrid inflation at the high energy scales normally considered.) `New' and thermal inflation seem to be viable alternatives for inflation at or below the TeV scale, including the case that quantum gravity is at the TeV scale. In any case, supersymmetry is needed required during inflation, in order to protect a scalar mass.Comment: 15 pages, one ref added in V

    Comments on gauge-invariance in cosmology

    Full text link
    We revisit the gauge issue in cosmological perturbation theory, and highlight its relation to the notion of covariance in general relativity. We also discuss the similarities and differences of the covariant approach in perturbation theory to the Bardeen or metric approach in a non-technical fashion.Comment: 7 pages, 1 figure, revtex4; v3: minor changes, typos corrected, discussion extended; v4: typos corrected, corresponding to published versio

    Advanced Networks in Motion Mobile Sensorweb

    Get PDF
    Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation

    Computational Efficiency of Frequency-- and Time--Domain Calculations of Extreme Mass--Ratio Binaries: Equatorial Orbits

    Full text link
    Gravitational waveforms and fluxes from extreme mass--ratio inspirals can be computed using time--domain methods with accuracy that is fast approaching that of frequency--domain methods. We study in detail the computational efficiency of these methods for equatorial orbits of fast spinning Kerr black holes, and find the number of modes needed in either method --as functions of the orbital parameters-- in order to achieve a desired accuracy level. We then estimate the total computation time and argue that for high eccentricity orbits the time--domain approach is more efficient computationally. We suggest that in practice low--mm modes are computed using the frequency--domain approach, and high--mm modes are computed using the time--domain approach, where mm is the azimuthal mode number.Comment: 19 figures, 6 table

    Dynamic map of protein interactions in the Escherichia coli chemotaxis pathway

    Get PDF
    Protein–protein interactions play key roles in virtually all cellular processes, often forming complex regulatory networks. A powerful tool to study interactions in vivo is fluorescence resonance energy transfer (FRET), which is based on the distance-dependent energy transfer from an excited donor to an acceptor fluorophore. Here, we used FRET to systematically map all protein interactions in the chemotaxis signaling pathway in Escherichia coli, one of the most studied models of signal transduction, and to determine stimulation-induced changes in the pathway. Our FRET analysis identified 19 positive FRET pairs out of the 28 possible protein combinations, with 9 pairs being responsive to chemotactic stimulation. Six stimulation-dependent and five stimulation-independent interactions were direct, whereas other interactions were apparently mediated by scaffolding proteins. Characterization of stimulation-induced responses revealed an additional regulation through activity dependence of interactions involving the adaptation enzyme CheB, and showed complex rearrangement of chemosensory receptors. Our study illustrates how FRET can be efficiently employed to study dynamic protein networks in vivo
    corecore