3,182 research outputs found
Core level spectroscopies locate hydrogen in the proton transfer pathway – identifying quasi-symmetrical hydrogen bonds in the solid state
Short, strong hydrogen bonds (SSHBs) have been a source of interest and considerable speculation over recent years, culminating with those where hydrogen resides around the midpoint between the donor and acceptor atoms, leading to quasi-covalent nature. We demonstrate that X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy provide deep insight into the electronic structure of the short OHN hydrogen bond of 3,5-pyridinedicarboxylic acid, revealing for the first time distinctive spectroscopic identifiers for these quasi-symmetrical hydrogen bonds. An intermediate nitrogen (core level) chemical shift occurs for the almost centrally located hydrogen compared to protonated (ionic) and non-ionic analogues, and it reveals the absence of two-site disorder. This type of bonding is also evident through broadening of the nitrogen 1s photoemission and 1s → 1π* peaks in XPS and NEXAFS, respectively, arising from the femtosecond lifetimes of hydrogen in the potential wells slightly offset to either side of the centre. The line-shape of the core level excitations are thus related to the population occupancies, reflecting the temperature-dependent shape of the hydrogen potential energy well. Both XPS and NEXAFS provide a distinctive identifier for these quasi-symmetrical hydrogen bonds, paving the way for detailed studies into their prevalence and potentially unique physical and chemical properties
NEXAFS Chemical State and Bond Lengths of p-Aminobenzoic Acid in Solution and Solid State
Solid-state and solution pH-dependent NEXAFS studies allow direct observation of the electronic state of para-aminobenzoic acid (PABA) as a function of its chemical environment, revealing the chemical state and bonding of the chemical species. Variations in the ionization potential (IP) and 1s→π* resonances unequivocally identify the chemical species (neutral, cationic, or anionic) present and the varying local environment. Shifts in σ* shape resonances relative to the IP in the NEXAFS spectra vary with C-N bond length, and the important effect of minor alterations in bond length is confirmed with nitrogen FEFF calculations, leading to the possibility of bond length determination in solution
Immobilisation of cell-binding peptides on poly-epsilon-caprolactone (PCL) films: A comparative XPS study of two chemical surface functionalisation methods
Successful interaction between cells and biomaterial surfaces is crucial for biomedical devices, and incorporation of peptides such as RGD (Arg-Gly-Asp) at the polymer interface can substantially promote cell adhesion and proliferation. X-ray photoelectron spectroscopy (XPS) has been used to characterise poly-ε-caprolactone (PCL) films modified by aminolysis and the introduction of RGD peptides via carbodiimide (CDI) and thiol-halogen ‘click’ chemistry. The nitrogen signal acts as an elemental indicator for successful attachment, and changes in the chemical environment are reflected in the carbon and oxygen spectra. Chlorine and sulfur provide additional chemical indicators of reaction progress in the thiol method, with the selective nature of the Cl–S reaction reflected in the complete loss of Cl signal and appearance of S, avoiding potential amine-peptide side-reactions. Comparison of the XPS elemental concentrations indicated an estimate of 2–3% peptide functionalisation on the PCL surface for both methods, correlating with the improvement in Schwann cell response observed after peptide immobilisation. The enhanced selectivity of peptide attachment to the polymer surface demonstrated with XPS for the novel method based on thiol chemistry shows its potential for development as a biomimetic scaffold for peripheral nerve injury
The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs
The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised
Incisive probing of intermolecular interactions in molecular crystals: core level spectroscopy combined with density functional theory
The α-form of crystalline para-aminobenzoic acid (PABA) has been examined as a model system for demonstrating how the core level spectroscopies X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) can be combined with CASTEP density functional theory (DFT) to provide reliable modeling of intermolecular bonding in organic molecular crystals. Through its dependence on unoccupied valence states NEXAFS is an extremely sensitive probe of variations in intermolecular bonding. Prediction of NEXAFS spectra by CASTEP, in combination with core level shifts predicted by WIEN2K, reproduced experimentally observed data very well when all significant intermolecular interactions were correctly taken into account. CASTEP-predicted NEXAFS spectra for the crystalline state were compared with those for an isolated PABA monomer to examine the impact of intermolecular interactions and local environment in the solid state. The effects of the loss of hydrogen-bonding in carboxylic acid dimers and intermolecular hydrogen bonding between amino and carboxylic acid moieties are evident, with energy shifts and intensity variations of NEXAFS features arising from the associated differences in electronic structure and bonding
A major change in precipitation gradient on the Chinese Loess Plateau at thePliocene-Quaternary boundary
Spatiotemporal variations in East Asian Monsoon (EAM) precipitation during the Quaternary have been intensively studied. However, spatial variations in pre-Quaternary EAM precipitation remain largely uninvestigated, preventing a clear understanding of monsoon dynamics during a warmer climatic period. Here we compare the spatial differences in heavy mineral assemblages between Quaternary loess and pre-Quaternary Red Clay on the Chinese Loess Plateau (CLP) to analyze spatial patterns in weathering. Prior studies have revealed that unstable hornblende is the dominant (∼50%) heavy mineral in Chinese loess deposited over the past 500 ka, whereas hornblende content decreases to < 10% in strata older than ∼1 Ma in the central CLP because of diagenesis. In the present study we found that hornblende is the dominant heavy mineral in 2–2.7 Ma loess on the northeastern CLP (at Jiaxian), which today receives little precipitation. Conversely, hornblende content in the upper Miocene-Pliocene Red Clay at Jiaxian is < 10%, as in the central CLP. The early Quaternary abundance of hornblende at Jiaxian indicates that the current northwestward-decreasing precipitation pattern and consequent dry climate at Jiaxian must have been initiated since ∼2.7 Ma, preventing hornblende dissolution to amounts < 10% as observed in the central CLP. By contrast, the 7 Ma and 3 Ma Jiaxian Red Clay hornblende content is significantly less than that of the Xifeng samples, despite the fact that today Xifeng receives more precipitation than Jiaxian, with expected enhanced hornblende weathering. This suggests that the northeastern
CLP received more precipitation during the Late Miocene-Pliocene than at Xifeng, indicating that the precipitation gradient on the CLP was more east–west during the Late Miocene-Pliocene rather than northwestsoutheast as it was in the Quaternary. A comparison of magnetic susceptibility records for these sections confirms this inference. We attribute this major change in climatic patterns at ∼2.7 Ma to decreased northward
moisture transportation associated with Northern Hemisphere glaciation and cooling in the Quaternary. This study therefore demonstrates the potential usefulness of employing heavy mineral analysis in both paleoclimatic and paleooceanographic reconstructions.<br style="line-height: normal; text-align: -webkit-auto; text-size-adjust: auto;" /
Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency
To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats
Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets
COVID-19 has demonstrated the power of RNA vaccines as part of a pandemic response toolkit. Another virus with pandemic potential is influenza. Further development of RNA vaccines in advance of a future influenza pandemic will save time and lives. As RNA vaccines require formulation to enter cells and induce antigen expression, the aim of this study was to investigate the impact of a recently developed bioreducible cationic polymer, pABOL for the delivery of a self-amplifying RNA (saRNA) vaccine for seasonal influenza virus in mice and ferrets. Mice and ferrets were immunized with pABOL formulated saRNA vaccines expressing either haemagglutinin (HA) from H1N1 or H3N2 influenza virus in a prime boost regime. Antibody responses, both binding and functional were measured in serum after immunization. Animals were then challenged with a matched influenza virus either directly by intranasal inoculation or in a contact transmission model. While highly immunogenic in mice, pABOL-formulated saRNA led to variable responses in ferrets. Animals that responded to the vaccine with higher levels of influenza virus-specific neutralizing antibodies were more protected against influenza virus infection. pABOL-formulated saRNA is immunogenic in ferrets, but further optimization of RNA vaccine formulation and constructs is required to increase the quality and quantity of the antibody response to the vaccine
Recognition of Face Identity and Emotion in Expressive Specific Language Impairment
Objective: To study face and emotion recognition in children with mostly expressive specific language impairment (SLI-E). Subjects and Methods: A test movie to study perception and recognition of faces and mimic-gestural expression was applied to 24 children diagnosed as suffering from SLI-E and an age-matched control group of normally developing children. Results: Compared to a normal control group, the SLI-E children scored significantly worse in both the face and expression recognition tasks with a preponderant effect on emotion recognition. The performance of the SLI-E group could not be explained by reduced attention during the test session. Conclusion: We conclude that SLI-E is associated with a deficiency in decoding non-verbal emotional facial and gestural information, which might lead to profound and persistent problems in social interaction and development. Copyright (C) 2012 S. Karger AG, Base
Nutritional implications of olives and sugar: attenuation of post-prandial glucose spikes in healthy volunteers by inhibition of sucrose hydrolysis and glucose transport by oleuropein
Purpose: The secoiridoid oleuropein, as found in olives and olive leaves, modulates some biomarkers of diabetes risk in vivo. A possible mechanism may be to attenuate sugar digestion and absorption.
Methods: We explored the potential of oleuropein, prepared from olive leaves in a water soluble form (OLE), to inhibit digestive enzymes (α-amylase, maltase, sucrase), and lower [¹⁴C(U)]-glucose uptake in Xenopus oocytes expressing human GLUT2 and [¹⁴C(U)]-glucose transport across differentiated Caco-2 cell monolayers. We conducted 7 separate crossover, controlled, randomised intervention studies on healthy volunteers (double-blinded and placebo-controlled for the OLE supplement) to assess the effect of OLE on post-prandial blood glucose after consumption of bread, glucose or sucrose.
Results: OLE inhibited intestinal maltase, human sucrase, glucose transport across Caco-2 monolayers, and uptake of glucose by GLUT2 in Xenopus oocytes, but was a weak inhibitor of human α-amylase. OLE, in capsules, in solution or as naturally present in olives, did not affect post-prandial glucose derived from bread, while OLE in solution attenuated post-prandial blood glucose after consumption of 25 g sucrose, but had no effect when consumed with 50 g of sucrose or glucose.
Conclusion: The combined inhibition of sucrase activity and of glucose transport observed in vitro was sufficient to modify digestion of low doses of sucrose in healthy volunteers. In comparison, the weak inhibition of α-amylase by OLE was not enough to modify blood sugar when consumed with a starch-rich food, suggesting that a threshold potency is required for inhibition of digestive enzymes in order to translate into in vivo effects
- …