38,769 research outputs found
Portable electrophoresis apparatus using minimum electrolyte
An electrophoresis unit for use in conducting electrophoretic analysis of specimens is described. The unit includes a sealable container in which a substrate mounted specimen is suspended in an electrolytic vapor. A heating unit is employed to heat a supply of electrolyte to produce the vapor. The substrate is suspended within the container by being attached between a pair of clips which also serve as electrodes to which a direct current power source may be connected
The dominant X-ray wind in massive star binaries
We investigate which shocked wind is responsible for the majority of the
X-ray emission in colliding wind binaries, an issue where there is some
confusion in the literature, and which we show is more complicated than has
been assumed. We find that where both winds rapidly cool (typically close
binaries), the ratio of the wind speeds is often more important than the
momentum ratio, because it controls the energy flux ratio, and the faster wind
is generally the dominant emitter. When both winds are largely adiabatic
(typically long-period binaries), the slower and denser wind will cool faster
and the stronger wind generally dominates the X-ray luminosity.Comment: 4 pages, 1 figure, accepted by A&A Letter
An investigation into the vertical axis control power requirements for landing VTOL type aircraft onboard nonaviation ships in various sea states
The problem of determining the vertical axis control requirements for landing a VTOL aircraft on a moving ship deck in various sea states is examined. Both a fixed-base piloted simulation and a nonpiloted simulation were used to determine the landing performance as influenced by thrust-to-weight ratio, vertical damping, and engine lags. The piloted simulation was run using a fixed-based simulator at Ames Research center. Simplified versions of an existing AV-8A Harrier model and an existing head-up display format were used. The ship model used was that of a DD963 class destroyer. Simplified linear models of the pilot, aircraft, ship motion, and ship air-wake turbulence were developed for the nonpiloted simulation. A unique aspect of the nonpiloted simulation was the development of a model of the piloting strategy used for shipboard landing. This model was refined during the piloted simulation until it provided a reasonably good representation of observed pilot behavior
Recommended from our members
Higher education academic salaries in the UK
It is widely believed that higher education academic salaries are too low, and that this may lead to a ‘brain drain’ and also lower quality in higher education, as universities fail to attract the ‘brightest and the best’. We compare the salaries of Higher Education teaching professionals in the UK with those of other comparable professionals. We compare academic salaries to a range of occupational groupings that one might view as similar, in terms of unobserved characteristics, to academics. We conclude that HE teaching professionals earn lower earnings than most public sector graduates and do particularly poorly compared to most other comparable professionals. In particular, academic earnings compare poorly to those in the legal professions, consultant physicians and dental practitioners (across both the public and private sectors). On the other hand, some public sector workers do worse than HE academics, e.g. FE teachers
Strange Hadron Spectroscopy with a Secondary KL Beam at GlueX
We propose to create a secondary beam of neutral kaons in Hall D at Jefferson
Lab to be used with the GlueX experimental setup for strange hadron
spectroscopy. A flux on the order of 3 x 10^4 KL/s will allow a broad range of
measurements to be made by improving the statistics of previous data obtained
on hydrogen targets by three orders of magnitude. Use of a deuteron target will
provide first measurements on the neutron which is {\it terra incognita}.
The experiment will measure both differential cross sections and
self-analyzed polarizations of the produced {\Lambda}, {\Sigma}, {\Xi}, and
{\Omega} hyperons using the GlueX detector at the Jefferson Lab Hall D. The
measurements will span c.m. cos{\theta} from -0.95 to 0.95 in the c.m. range
above W = 1490 MeV and up to 3500 MeV. These new GlueX data will greatly
constrain partial-wave analyses and reduce model-dependent uncertainties in the
extraction of strange resonance properties (including pole positions), and
provide a new benchmark for comparisons with QCD-inspired models and lattice
QCD calculations.
The proposed facility will also have an impact in the strange meson sector by
providing measurements of the final-state K{\pi} system from threshold up to 2
GeV invariant mass to establish and improve on the pole positions and widths of
all K*(K{\pi}) P-wave states as well as for the S-wave scalar meson
{\kappa}(800).Comment: 97 pages, 63 figures, Proposal for JLab PAC45, PR12-17-001; v3 missed
citation in Sec 9 (pg 22
Optimal Prandtl number for heat transfer in rotating Rayleigh-Benard convection
Numerical data for the heat transfer as a function of the Prandtl (Pr) and
Rossby (Ro) numbers in turbulent rotating Rayleigh-Benard convection are
presented for Rayleigh number Ra = 10^8. When Ro is fixed the heat transfer
enhancement with respect to the non-rotating value shows a maximum as function
of Pr. This maximum is due to the reduced efficiency of Ekman pumping when Pr
becomes too small or too large. When Pr becomes small, i.e. for large thermal
diffusivity, the heat that is carried by the vertical vortices spreads out in
the middle of the cell, and Ekman pumping thus becomes less efficient. For
higher Pr the thermal boundary layers (BLs) are thinner than the kinetic BLs
and therefore the Ekman vortices do not reach the thermal BL. This means that
the fluid that is sucked into the vertical vortices is colder than for lower Pr
which limits the efficiency of the upwards heat transfer.Comment: 5 pages, 6 figure
Heat transport and flow structure in rotating Rayleigh-B\'enard convection
Here we summarize the results from our direct numerical simulations (DNS) and
experimental measurements on rotating Rayleigh-B\'enard (RB) convection. Our
experiments and simulations are performed in cylindrical samples with an aspect
ratio \Gamma varying from 1/2 to 2. Here \Gamma=D/L, where D and L are the
diameter and height of the sample, respectively. When the rotation rate is
increased, while a fixed temperature difference between the hot bottom and cold
top plate is maintained, a sharp increase in the heat transfer is observed
before the heat transfer drops drastically at stronger rotation rates. Here we
focus on the question of how the heat transfer enhancement with respect to the
non-rotating case depends on the Rayleigh number Ra, the Prandtl number Pr, and
the rotation rate, indicated by the Rossby number Ro. Special attention will be
given to the influence of the aspect ratio on the rotation rate that is
required to get heat transport enhancement. In addition, we will discuss the
relation between the heat transfer and the large scale flow structures that are
formed in the different regimes of rotating RB convection and how the different
regimes can be identified in experiments and simulations.Comment: 12 pages, 10 figure
A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms
In order to enable simulations of developing wind turbine array boundary
layers with highly realistic inflow conditions a concurrent precursor method
for Large Eddy Simulations is proposed. In this method we consider two domains
simultaneously, i.e. in one domain a turbulent Atmospheric Boundary Layer (ABL)
without wind turbines is simulated in order to generate the turbulent inflow
conditions for a second domain in which the wind turbines are placed. The
benefit of this approach is that a) it avoids the need for large databases in
which the turbulent inflow conditions are stored and the correspondingly slow
I/O operations and b) we are sure that the simulations are not negatively
affected by statically swept fixed inflow fields or synthetic fields lacking
the proper ABL coherent structures. Sample applications are presented, in
which, in agreement with field data a strong decrease of the power output of
downstream wind-turbines with respect to the first row of wind-turbines is
observed for perfectly aligned inflow.Comment: 13 pages, 5 figure
Radial boundary layer structure and Nusselt number in Rayleigh-Benard convection
Results from direct numerical simulations for three dimensional
Rayleigh-Benard convection in a cylindrical cell of aspect ratio 1/2 and Pr=0.7
are presented. They span five decades of Ra from to . Good numerical resolution with grid spacing Kolmogorov
scale turns out to be crucial to accurately calculate the Nusselt number, which
is in good agreement with the experimental data by Niemela et al., Nature, 404,
837 (2000). In underresolved simulations the hot (cold) plumes travel further
from the bottom (top) plate than in the fully resolved case, because the
thermal dissipation close to the sidewall (where the grid cells are largest) is
insufficient. We compared the fully resolved thermal boundary layer profile
with the Prandtl-Blasius profile. We find that the boundary layer profile is
closer to the Prandtl Blasius profile at the cylinder axis than close to the
sidewall, due to rising plumes in that region.Comment: 10 pages, 6 figure
Probing the wind-wind collision in Gamma Velorum with high-resolution Chandra X-ray spectroscopy: evidence for sudden radiative braking and non-equilibrium ionization
We present a new analysis of an archived Chandra HETGS X-ray spectrum of the
WR+O colliding wind binary Gamma Velorum. The spectrum is dominated by emission
lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a
combination of broad-band spectral analysis and an analysis of line flux ratios
we infer a wide range of temperatures in the X-ray emitting plasma (~4-40 MK).
As in the previously published analysis, we find the X-ray emission lines are
essentially unshifted, with a mean FWHM of 1240 +/- 30 km/s. Calculations of
line profiles based on hydrodynamical simulations of the wind-wind collision
predict lines that are blueshifted by a few hundred km/s. The lack of any
observed shift in the lines may be evidence of a large shock-cone opening
half-angle (> 85 degrees), and we suggest this may be evidence of sudden
radiative braking. From the R and G ratios measured from He-like
forbidden-intercombination-resonance triplets we find evidence that the Mg XI
emission originates from hotter gas closer to the O star than the Si XIII
emission, which suggests that non-equilibrium ionization may be present.Comment: 22 pages, 14 figures. Accepted for publication in MNRA
- …