Results from direct numerical simulations for three dimensional
Rayleigh-Benard convection in a cylindrical cell of aspect ratio 1/2 and Pr=0.7
are presented. They span five decades of Ra from 2×106 to 2×1011. Good numerical resolution with grid spacing ∼ Kolmogorov
scale turns out to be crucial to accurately calculate the Nusselt number, which
is in good agreement with the experimental data by Niemela et al., Nature, 404,
837 (2000). In underresolved simulations the hot (cold) plumes travel further
from the bottom (top) plate than in the fully resolved case, because the
thermal dissipation close to the sidewall (where the grid cells are largest) is
insufficient. We compared the fully resolved thermal boundary layer profile
with the Prandtl-Blasius profile. We find that the boundary layer profile is
closer to the Prandtl Blasius profile at the cylinder axis than close to the
sidewall, due to rising plumes in that region.Comment: 10 pages, 6 figure