14,249 research outputs found

    Trypanosomes are monophyletic: evidence from genes for glyceraldehyde phosphate dehydrogenase and small subunit ribosomal RNA.

    No full text
    The genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major have been sequenced, but the phylogenetic relationships of these three protozoa remain uncertain. We have constructed trypanosomatid phylogenies based on genes for glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and small subunit ribosomal RNA (SSU rRNA). Trees based on gGAPDH nucleotide and amino acid sequences (51 taxa) robustly support monophyly of genus Trypanosoma, which is revealed to be a relatively late-evolving lineage of the family Trypanosomatidae. Other trypanosomatids, including genus Leishmania, branch paraphyletically at the base of the trypanosome clade. On the other hand, analysis of the SSU rRNA gene data produced equivocal results, as trees either robustly support or reject monophyly depending on the range of taxa included in the alignment. We conclude that the SSU rRNA gene is not a reliable marker for inferring deep level trypanosome phylogeny. The gGAPDH results support the hypothesis that trypanosomes evolved from an ancestral insect parasite, which adapted to a vertebrate/insect transmission cycle. This implies that the switch from terrestrial insect to aquatic leech vectors for fish and some amphibian trypanosomes was secondary. We conclude that the three sequenced pathogens, T. brucei, T. cruzi and L. major, are only distantly related and have distinct evolutionary histories

    Algebraic geometric methods for the stabilizability and reliability of multivariable and of multimode systems

    Get PDF
    The extent to which feedback can alter the dynamic characteristics (e.g., instability, oscillations) of a control system, possibly operating in one or more modes (e.g., failure versus nonfailure of one or more components) is examined

    Evolutionary design of a full-envelope full-authority flight control system for an unstable high-performance aircraft

    Get PDF
    The use of an evolutionary algorithm in the framework of H1 control theory is being considered as a means for synthesizing controller gains that minimize a weighted combination of the infinite norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements) at the same time. The case study deals with a complete full-authority longitudinal control system for an unstable high-performance jet aircraft featuring (i) a stability and control augmentation system and (ii) autopilot functions (speed and altitude hold). Constraints on closed-loop response are enforced, that representing typical requirements on airplane handling qualities, that makes the control law synthesis process more demanding. Gain scheduling is required, in order to obtain satisfactory performance over the whole flight envelope, so that the synthesis is performed at different reference trim conditions, for several values of the dynamic pressure, used as the scheduling parameter. Nonetheless, the dynamic behaviour of the aircraft may exhibit significant variations when flying at different altitudes, even for the same value of the dynamic pressure, so that a trade-off is required between different feasible controllers synthesized at different altitudes for a given equivalent airspeed. A multiobjective search is thus considered for the determination of the best suited solution to be introduced in the scheduling of the control law. The obtained results are then tested on a longitudinal non-linear model of the aircraft

    Charge renormalization and phase separation in colloidal suspensions

    Full text link
    We explore the effects of counterion condensation on fluid-fluid phase separation in charged colloidal suspensions. It is found that formation of double layers around the colloidal particles stabilizes suspensions against phase separation. Addition of salt, however, produces an instability which, in principle, can lead to a fluid-fluid separation. The instability, however, is so weak that it should be impossible to observe a fully equilibrated coexistence experimentally.Comment: 7 pages, Europhysics Letters (in press

    Effects of Static and Dynamic Hamstring Stretching on Anaerobic Exercise Performance

    Get PDF
    Please view abstract in the attached PDF file

    Worker heterogeneity, new monopsony, and training

    Get PDF
    A worker's output depends not only on his/her own ability but also on that of colleagues, who can facilitate the performance of tasks that each individual cannot accomplish on his/her own. We show that this common-sense observation generates monopsony power and is sufficient to explain why employers might expend resources on training employees even when the training is of use to other firms. We show that training will take place in better-than-average or ‘good’ firms enjoying greater monopsony power, whereas ‘bad’ firms will have low-ability workers unlikely to receive much training

    Crystalline electric field effects in the electrical resistivity of PrOs4_4Sb12_{12}

    Full text link
    The temperature TT and magnetic field HH dependencies of the electrical resistivity ρ\rho of the recently discovered heavy fermion superconductor \PrOsSb{} have features that are associated with the splitting of the Pr3+^{3+} Hund's rule multiplet by the crystalline electric field (CEF). These features are apparently due to magnetic exchange and aspherical Coulomb scattering from the thermally populated CEF-split Pr3+^{3+} energy levels. The ρ(T)\rho(T) data in zero magnetic field can be described well by calculations based on CEF theory for various ratios of magnetic exchange and aspherical Coulomb scattering, and yield CEF parameters that are qualitatively consistent with those previously derived from magnetic susceptibility, specific heat, and inelastic neutron scattering measurements. Calculated ρ(H)\rho(H) isotherms for a Γ3\Gamma_{3} ground state qualitatively account for the `dome-shaped' feature in the measured ρ(H)\rho(H) isotherms.Comment: 8 pages, 2 figures, submitted to Journal of Physics: Condensed Matte

    Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.

    Get PDF
    Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years

    Fibroblast Growth Factor 23 (FGF23) and Alpha-Klotho Stimulate Osteoblastic MC3T3.E1 Cell Proliferation and Inhibit Mineralization

    Get PDF
    Elevated serum levels of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) are found in patients with phosphate wasting diseases and chronic kidney disease-mineral and bone disorder (CKD-MBD). These diseases are associated with rickets and renal osteodystrophy, respectively. FGF23 is secreted from osteoblastic cells and signals through FGFRs, membrane coreceptor alpha-Klotho (Klotho), and, possibly, a circulating form of Klotho. Despite the absence of detectable Klotho on osteoblastic cells, studies have suggested that forced FGF23 expression in osteoblasts inhibited mineralization. Thus, we examined the effects of exogenously applied FGF23 on osteoblastic MC3T3.E1 cell proliferation and differentiation, with and without soluble Klotho. MC3T3.E1 cells were cultured in osteoblast differentiation medium, supplemented with FGF23 (0.1–1,000 ng/mL), Klotho (50 ng/mL), the combination FGF23 + Klotho, and FGF2 (100 ng/mL) as a control. Neither FGF23 nor Klotho exposure affected proliferation of day 4 growth phase cells or mineralization of day 14 cultures. In contrast, FGF23 + Klotho resulted in inhibition of mineralization and osteoblast activity markers at day 14, and a slight, reproducible induction of proliferation. Inhibition of FGFR1, but not FGFR2 or FGFR3, completely restored FGF23 + Klotho-induced inhibition of alkaline phosphatase (ALP) activity at day 7. ALP activity was partially restored by the MAPK inhibitor U0126 but not inhibitors p38 and P13K. Thus, soluble Klotho enables FGF23 signaling in MC3T3.E1 cells, likely through FGFR 1(IIIc). Elevated FGF23 actions, in part, appear to parallel FGF2 with lower potency. In addition to affecting bone via indirect phosphate wasting pathways, supraphysiological FGF23 and soluble Klotho may directly impact bone in diseases with elevated FGF23 levels
    corecore