1,083 research outputs found
Iatrogenic Spinal Cord Injury during Removal of the Inferior Articular Process in the Presence of Ossification of the Ligamentum Flavum
Ossified ligamentum flavum (OLF) is a condition of heterotopic lamellar bone formation within the yellow ligament. Some patients with OLF can be asymptomatic. However, asymptomatic OLF may not be obvious on preoperative MRI and could increase the risk of iatrogenic injury during treatments for unrelated spinal conditions. This report describes a case of spinal cord injury caused by the indirect transmission of force from an osteotome to an asymptomatic OLF during the resection of a thoracic inferior articular process (IAP). To prevent this outcome, we urge careful review of CT imaging in the preoperative setting and advocate the use of a high-speed drill instead of an osteotome during bone removal in the setting of an adjacent area of OLF
Superconducting states and depinning transitions of Josephson ladders
We present analytical and numerical studies of pinned superconducting states
of open-ended Josephson ladder arrays, neglecting inductances but taking edge
effects into account. Treating the edge effects perturbatively, we find
analytical approximations for three of these superconducting states -- the
no-vortex, fully-frustrated and single-vortex states -- as functions of the dc
bias current and the frustration . Bifurcation theory is used to derive
formulas for the depinning currents and critical frustrations at which the
superconducting states disappear or lose dynamical stability as and are
varied. These results are combined to yield a zero-temperature stability
diagram of the system with respect to and . To highlight the effects of
the edges, we compare this dynamical stability diagram to the thermodynamic
phase diagram for the infinite system where edges have been neglected. We
briefly indicate how to extend our methods to include self-inductances.Comment: RevTeX, 22 pages, 17 figures included; Errata added, 1 page, 1
corrected figur
The ENIGMA Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke
The goal of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well‐powered meta‐ and mega‐analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large‐scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided
Induced pseudoscalar coupling of the proton weak interaction
The induced pseudoscalar coupling is the least well known of the weak
coupling constants of the proton's charged--current interaction. Its size is
dictated by chiral symmetry arguments, and its measurement represents an
important test of quantum chromodynamics at low energies. During the past
decade a large body of new data relevant to the coupling has been
accumulated. This data includes measurements of radiative and non radiative
muon capture on targets ranging from hydrogen and few--nucleon systems to
complex nuclei. Herein the authors review the theoretical underpinnings of
, the experimental studies of , and the procedures and uncertainties
in extracting the coupling from data. Current puzzles are highlighted and
future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic
Topological doping and the stability of stripe phases
We analyze the properties of a general Ginzburg-Landau free energy with
competing order parameters, long-range interactions, and global constraints
(e.g., a fixed value of a total ``charge'') to address the physics of stripe
phases in underdoped high-Tc and related materials. For a local free energy
limited to quadratic terms of the gradient expansion, only uniform or
phase-separated configurations are thermodynamically stable. ``Stripe'' or
other non-uniform phases can be stabilized by long-range forces, but can only
have non-topological (in-phase) domain walls where the components of the
antiferromagnetic order parameter never change sign, and the periods of charge
and spin density waves coincide. The antiphase domain walls observed
experimentally require physics on an intermediate lengthscale, and they are
absent from a model that involves only long-distance physics. Dense stripe
phases can be stable even in the absence of long-range forces, but domain walls
always attract at large distances, i.e., there is a ubiquitous tendency to
phase separation at small doping. The implications for the phase diagram of
underdoped cuprates are discussed.Comment: 18 two-column pages, 2 figures, revtex+eps
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
The RNA-programmable Cas9 endonuclease cleaves double-stranded DNA at sites complementary to a 20-base-pair guide RNA. The Cas9 system has been used to modify genomes in multiple cells and organisms, demonstrating its potential as a facile genome-engineering tool. We used in vitro selection and high-throughput sequencing to determine the propensity of eight Cas9:guide RNA complexes to cleave each of 10^12 potential off-target DNA sequences. The selection results predicted five off-target sites in the human genome that were confirmed to undergo genome cleavage in HEK293T cells upon expression of one of two Cas9:guide RNA complexes. In contrast to previous models, our results show that Cas9:guide RNA specificity extends past a 7- to 12-base pair seed sequence. Our results also suggest a tradeoff between activity and specificity both in vitro and in cells as a shorter, less-active guide RNA is more specific then a longer, more-active guide RNA. High concentrations of Cas9:guide RNA complexes can cleave off-target sites containing mutations near or within the PAM that are not cleaved when enzyme concentrations are limiting
Aqueductal developmental venous anomaly as an unusual cause of congenital hydrocephalus: a case report and review of the literature
<p>Abstract</p> <p>Introduction</p> <p>Aqueductal stenosis may be caused by a number of etiologies including congenital stenosis, tumor, inflammation, and, very rarely, vascular malformation. However, aqueductal stenosis caused by a developmental venous anomaly presenting as congenital hydrocephalus is even more rare, and, to the best of our knowledge, has not yet been reported in the literature. In this study, we review the literature and report the first case of congenital hydrocephalus associated with aqueductal stenosis from a developmental venous anomaly.</p> <p>Case presentation</p> <p>The patient is a three-day-old, African-American baby girl with a prenatal diagnosis of hydrocephalus. She presented with a full fontanelle, splayed sutures, and macrocephaly. Postnatal magnetic resonance imaging showed triventricular hydrocephalus, suggesting aqueductal stenosis. Examination of the T1-weighted sagittal magnetic resonance imaging enhanced with gadolinium revealed a developmental venous anomaly passing through the orifice of the aqueduct. We treated the patient with a ventriculoperitoneal shunt.</p> <p>Conclusions</p> <p>Ten cases of aqueductal stenosis due to venous lesions have been reported and, although these venous angiomas and developmental venous anomalies are usually considered congenital lesions, all 10 cases became symptomatic as older children and adults. Our case is the first in which aqueductal stenosis caused by a developmental venous anomaly presents as congenital hydrocephalus. We hope adding to the literature will improve understanding of this very uncommon cause of hydrocephalus and, therefore, will aid in treatment.</p
Fractionation of a Herbal Antidiarrheal Medicine Reveals Eugenol as an Inhibitor of Ca2+-Activated Cl− Channel TMEM16A
The Ca2+-activated Cl− channel TMEM16A is involved in epithelial fluid secretion, smooth muscle contraction and neurosensory signaling. We identified a Thai herbal antidiarrheal formulation that inhibited TMEM16A Cl− conductance. C18-reversed-phase HPLC fractionation of the herbal formulation revealed >98% of TMEM16A inhibition activity in one out of approximately 20 distinct peaks. The purified, active compound was identified as eugenol (4-allyl-2-methoxyphenol), the major component of clove oil. Eugenol fully inhibited TMEM16A Cl− conductance with single-site IC50∼150 µM. Eugenol inhibition of TMEM16A in interstitial cells of Cajal produced strong inhibition of intestinal contraction in mouse ileal segments. TMEM16A Cl− channel inhibition adds to the list of eugenol molecular targets and may account for some of its biological activities
- …