2,291 research outputs found

    Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an Ecosystem Process Model and Three-Dimensional Atmospheric Transport Model

    Get PDF
    A generalized terrestrial ecosystem process model, BIOME-BGC (for BIOME BioGeoChemical Cycles), was used to simulate the global fluxes of CO2 resulting from photosynthesis, autotrophic respiration, and heterotrophic respiration. Daily meteorological data for the year 1987, gridded to 1° by 1°, were used to drive the model simulations. From the maximum value of the normalized difference vegetation index (NDVI) for 1987, the leaf area index for each grid cell was computed. Global NPP was estimated to be 52 Pg C, and global Rh was estimated to be 66 Pg C. Model predictions of the stable carbon isotopic ratio 13C/12C for C3 and C4 vegetation were in accord with values published in the literature, suggesting that our computations of total net photosynthesis, and thus NPP, are more reliable than Rh. For each grid cell, daily Rh was adjusted so that the annual total was equal to annual NPP, and the resulting net carbon fluxes were used as inputs to a three-dimensional atmospheric transport model (TM2) using wind data from 1987. We compared the spatial and seasonal patterns of NPP with a diagnostic NDVI model, where NPP was derived from biweekly NDVI data and Rh was tuned to fit atmospheric CO2 observations from three northern stations. To an encouraging degree, predictions from the BIOME-BGC model agreed in phase and amplitude with observed atmospheric CO2 concentrations for 20° to 55°N, the zone in which the most complete data on ecosystem processes and meteorological input data are available. However, in the tropics and high northern latitudes, disagreements between simulated and measured CO2 concentrations indicated areas where the model could be improved. We present here a methodology by which terrestrial ecosystem models can be tested globally, not by comparisons to homogeneous-plot data, but by seasonal and spatial consistency with a diagnostic NDVI model and atmospheric CO2 observations

    Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme

    Get PDF
    Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning

    Prognostic value of basal high-sensitive cardiac troponin levels on mortality in the general population

    Get PDF
    Interest in the use of cardiac troponin T (cTnT) and cardiac troponin I (cTnI) has expanded from diagnosis of acute myocardial infarction to risk assessment for morbidity and mortality. Although cTnT and cTnI were shown to have equivalent diagnostic performance in the setting of suspected acute myocardial infarction, potential prognostic differences are largely unexplored. The aim of this study is to quantify and compare the relationship between cTnT and cTnI, and cardiovascular and all-cause mortality in the general population. Medline, Embase, and the Cochrane Library (from inception through October 2016) were searched for prospective observational cohort studies reporting on the prognostic value of basal high-sensitive cTnT and/or cTnI levels on cardiovascular and all-cause mortality in the general population. Data on study characteristics, participants' characteristics, outcome parameters, and quality [according to the Effective Public Health Practice Project (EPHPP) "Quality Assessment Tool For Quantitative Studies] were retrieved. Hazard ratios per standard deviation increase in basal cardiac troponin level (HR per 1-SD; retrieved from the included articles or estimated) were pooled using a random-effects model. On a total of 2585 reviewed citations, 11 studies, with data on 65,019 participants, were included in the meta-analysis. Random effects pooling showed significant associations between basal cardiac troponin levels and HR for cardiovascular and all-cause mortality [HR per 1-SD 1.29 (95% confidence interval, 95% CI, 1.20-1.38) and HR per 1-SD 1.18 (95% CI, 1.11-1.26), respectively]. Stratified analyses showed higher HRs for cTnT than cTnI [cardiovascular mortality: cTnT HR per 1-SD 1.37 (95% CI, 1.23-1.52); and cTnI HR per 1-SD 1.21 (95% CI, 1.16-1.26); all-cause mortality: cTnT HR per 1-SD 1.31 (955 CI, 1.13-1.53); and cTnI HR per 1-SD 1.14 (95% CI, 1.06-1.22)]. These differences were significant (P < 0.01) in meta-regression analyses for cardiovascular mortality but did not reach statistical significance for all-cause mortality. Elevated, basal cTnT, and cTnI show robust associations with an increased risk of cardiovascular and all-cause mortality during follow-up in the general population

    Metformin and high-sensitivity cardiac troponin I and T trajectories in type 2 diabetes patients: a post-hoc analysis of a randomized controlled trial

    Get PDF
    Background: Metformin has favorable effects on cardiovascular outcomes in both newly onset and advanced type 2 diabetes, as previously reported findings from the UK Prospective Diabetes Study and the HOME trial have demonstrated. Patients with type 2 diabetes present with chronically elevated circulating cardiac troponin levels, an established predictor of cardiovascular endpoints and prognostic marker of subclinical myocardial injury. It is unknown whether metformin affects cardiac troponin levels. The study aimed to evaluate cardiac troponin I and T trajectories in patients with diabetes treated either with metformin or placebo. Methods: This study is a post-hoc analysis of a randomized controlled trial (HOME trial) that included 390 patients with advanced type 2 diabetes randomized to 850 mg metformin or placebo up to three times daily concomitant to continued insulin treatment. Cardiac troponin I and T concentrations were measured at baseline and after 4, 17, 30, 43 and 52 months. We evaluated cardiac troponin trajectories by linear mixed-effects modeling, correcting for age, sex, smoking status and history of cardiovascular disease. Results: This study enrolled 390 subjects, of which 196 received metformin and 194 received placebo. In the treatment and placebo groups, mean age was 64 and 59 years; with 50% and 58% of subjects of the female sex, respectively. Despite the previously reported reduction of macrovascular disease risk in this cohort by metformin, linear mixed-effects regression modelling did not reveal evidence for an effect on cardiac troponin I and cardiac troponin T levels [− 8.4% (− 18.6, 3.2), p = 0.150, and − 4.6% (− 12, 3.2), p = 0.242, respectively]. A statistically significant time-treatment interaction was found for troponin T [− 1.6% (− 2.9, − 0.2), p = 0.021] but not troponin I concentrations [− 1.5% (− 4.2, 1.2), p = 0.263]. Conclusions: In this post-hoc analysis of a 4.3-year randomized controlled trial, metformin did not exert a clinically relevant effect on cardiac troponin I and cardiac troponin T levels when compared to placebo. Cardioprotective effects of the drug observed in clinical studies are not reflected by a reduction in these biomarkers of subclinical myocardial injury. Trial registration ClinicalTrials.gov identifier NCT00375388

    Inverse modeling of CH4 emissions for 2010 - 2011 using different satellite retrieval products from GOSAT and SCIAMACHY

    Get PDF
    Beginning in 2009 new space-borne observations of dry-air column-averaged mole fractions of atmospheric methane (XCH4) became available from the Thermal And Near infrared Sensor for carbon Observations - Fourier Transform Spectrometer (TANSO-FTS) instrument onboard the Greenhouse Gases Observing SATellite (GOSAT). Until April 2012 concurrent CH4 measurements were provided by the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) instrument onboard ENVISAT. The GOSAT and SCIAMACHY XCH4 retrievals can be directly compared during their circa 32-month period of overlap. We estimate monthly average CH4 emissions between January 2010 and December 2011, using the TM5-4DVAR inverse modeling system. Additionally, high-accuracy measurements from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA ESRL) global air sampling network are used, providing strong constraints of the remote surface atmosphere. We discuss five inversion scenarios that make use of different GOSAT and SCIAMACHY XCH4 retrieval products, including two sets of GOSAT proxy retrievals processed independently by the Netherlands Institute for Space Research (SRON) / Karlsruhe Institute of Technology (KIT), and the University of Leicester (UL), and the RemoTeC "Full-Physics" (FP) XCH4 retrievals available from SRON/KIT. 2-year average emission maps show a good overall agreement among all GOSAT-based inversions, but also compared to the SCIAMACHY-based inversion, with consistent flux adjustment patterns, particularly across Equatorial Africa and North America. The inversions are validated against independent shipboard and aircraft observations, and XCH4 measurements available from the Total Carbon Column Observing Network (TCCON). All GOSAT and SCIAMACHY inversions show very similar validation performance.JRC.H.2-Air and Climat

    Evidence Report: Risk of Spaceflight Associated Neuro-ocular Syndrome (SANS)

    Get PDF
    A subset of astronauts develop neuro-ocular structural and functional changes during prolonged periods of spaceflight that may lead to additional neurologic and ocular consequences upon return to Earth

    Emerging Themes from the ESA Symposium Entitled “Pollinator Nutrition: Lessons from Bees at Individual to Landscape Levels”

    Get PDF
    Pollinator populations are declining (Biesmeijer et al., 2006; Brodschneider et al., 2018; Cameron et al., 2011; Goulson, Lye, & Darvill, 2008; Kulhanek et al., 2017; National Research Council, 2007; Oldroyd, 2007), and both anecdotal and experimental evidence suggest that limited access to high quality forage might play a role (Carvell, Meek, Pywell, Goulson, & Nowakowski, 2007; Deepa et al., 2017; Goulson, Nicholls, Botias, & Rotheray, 2015; Potts et al., 2003, 2010; Vanbergen & The Insect Pollinators Initiative, 2013; Vaudo, Tooker, Grozinger, & Patch, 2015; Woodard, 2017). Multiple researchers are earnestly addressing this topic in a diverse array of insect-pollinator systems. As research continues to be published, increased communication among scientists studying the topic of nutrition is essential for improving pollinator health

    The nomenclature, definition and classification of discordant atrioventricular connections

    Get PDF
    Congenitally corrected transposition is a complex cardiac lesion that is often associated with ventricular septal defect, obstruction of the outflow tract of the morphologically left ventricle, and abnormalities of the morphologically tricuspid valve.1,2Nomenclature for this lesion has been variable and confusing.1In this review, we define, and hopefully clarify this terminology. The lesion is a combination of discordant union of the atrial chambers with the ventricles, and the ventricles with the arterial trunks.1,2In rare circumstances, discordant atrioventricular connections can be associated with concordant ventriculo-arterial connections. This malformation has been called "isolated ventricular inversion". The term is less than precise, and the descriptive approach using the phrase "discordant atrioventricular connections with concordant ventriculo-arterial connections" is preferred, as discussed below

    The effect of exercise training on the course of cardiac troponin T and i levels: Three independent training studies

    Get PDF
    With the introduction of high-sensitive assays, cardiac troponins became potential biomarkers for risk stratification and prognostic medicine. Observational studies have reported an inverse association between physical activity and basal cardiac troponin levels. However, causality has never been demonstrated. This study investigated whether basal cardiac troponin concentrations are receptive to lifestyle interventions such as exercise training. Basal high-sensitive cardiac troponin T ( cTnT ) and I ( cTnI ) were monitored in two resistance-type exercise training programs ( 12-week ( study 1 ) and 24-week ( study 2 ) ) in older adults ( ≥65 years ). In addition, a retrospective analysis for high sensitive troponin I in a 24-week exercise controlled trial in ( pre )frail older adults was performed ( study 3 ). In total, 91 subjects were included in the final data analyses. There were no significant changes in cardiac troponin levels over time in study 1 and 2 ( study 1: cTnT −0.13 ( −0.33–+0.08 ) ng/L/12-weeks, cTnI −0.10 ( −0.33–+0.12 ) ng/L/12-weeks; study 2: cTnT −1.99 ( −4.79–+0.81 ) ng/L/24-weeks, cTnI −1.59 ( −5.70–+2.51 ) ng/L/24-weeks ). Neither was there a significant interaction between training and the course of cardiac troponin in study 3 ( p = 0.27 ). In conclusion, this study provides no evidence that prolonged resistance-type exercise training can modulate basal cardiac troponin levels

    Ernst Freund as Precursor of the Rational Study of Corporate Law

    Get PDF
    Gindis, David, Ernst Freund as Precursor of the Rational Study of Corporate Law (October 27, 2017). Journal of Institutional Economics, Forthcoming. Available at SSRN: https://ssrn.com/abstract=2905547, doi: https://dx.doi.org/10.2139/ssrn.2905547The rise of large business corporations in the late 19th century compelled many American observers to admit that the nature of the corporation had yet to be understood. Published in this context, Ernst Freund's little-known The Legal Nature of Corporations (1897) was an original attempt to come to terms with a new legal and economic reality. But it can also be described, to paraphrase Oliver Wendell Holmes, as the earliest example of the rational study of corporate law. The paper shows that Freund had the intuitions of an institutional economist, and engaged in what today would be called comparative institutional analysis. Remarkably, his argument that the corporate form secures property against insider defection and against outsiders anticipated recent work on entity shielding and capital lock-in, and can be read as an early contribution to what today would be called the theory of the firm.Peer reviewe
    corecore