385 research outputs found
Paired measurement of urinary creatinine in neonates based on a Jaffe and an enzymatic IDMS-traceable assay
BACKGROUND: Urinary creatinine can be quantified by Jaffe or enzymatic assays and is commonly used as denominator of urinary excretion of electrolytes or protein. Paired analysis in pediatric and adult samples documented inter-assay differences (up to 80%). We verified the interchangeability of two IDMS-traceable assays (Jaffe and enzymatic) for neonatal urine and report on neonatal urinary creatinine values using these IDMS-traceable methods. METHODS: Creatinine was measured in 84 neonatal urine samples from 46 neonates by an IDMS traceable Jaffe and enzymatic assay (Roche Diagnostics, Cobas c702 module). Creatinine values, differences in urinary creatinine and clinical characteristics were described and covariates of between assay difference were explored (Wilcoxon, Bland-Altman, correlation, multiple regression). RESULTS: Median Jaffe and enzymatic urinary creatinine concentrations were 9.25 (range 3.7-42.2) and 9.15 (range 3.8-42.9) mg/dL respectively, resulting in a median difference of 0.08 (SD 0.6, range −2.4 to 0.96) mg/dL. In a multiple regression model, urinary enzymatic creatinine concentration (r = 0.45) and postnatal age (r = −0.59) remained independent variables of the difference between both assays (r(2) adj = 0.45). CONCLUSIONS: The tested IDMS-traceable assays showed interchangeable in heterogeneous neonatal urine samples. Using these assays, neonatal urinary creatinine showed 5–20 fold lower values than those observed in children or adults with a significant negative correlation with postnatal age
An unconscious man with profound drug-induced hypoglycaemia
Introduction: Hypoglycaemia has been reported as an unusual complication of tramadol use and in a few cases of tramadol poisoning, but the
exact mechanism is not known.
Case description: An ambulance crew was dispatched to an unconscious 46-year old man. A glucometer point-of-care measurement revealed a
profound hypoglycaemia (1.9 mmol/L). Treatment with intravenous glucose was started and the patient was transported to the hospital. The patient
had several episodes of pulseless electrical activity requiring cardiopulmonary resuscitation in the ambulance and upon arrival in the hospital.
Despite continuous glucose infusion the hypoglycaemia was difficult to correct during the next few hours and the patient developed hypokalaemia.
Further investigation to identify the cause of hypoglycaemia revealed that insulin and C-peptide were inappropriately raised. A toxicological investigation
revealed the presence of tramadol and its metabolites in lethal concentrations. Also acetaminophen, ibuprofen and lormetazepam were
present. Ethanol screening was negative (< 0.1 g/L) and no sulfonylurea were detected. The patient developed multiple organ failure, but eventually
recovered.
What happened: The hypoglycaemia was caused by inappropriate stimulation of insulin secretion in a patient intoxicated with tramadol. The
sudden hypokalaemia was caused by a massive intracellular shift of potassium in response to the hyperinsulinemia, triggered by the intravenous
administration of glucose.
Main lesson: To our knowledge, we are the first to document a significant rise in endogenous insulin production in a hypoglycaemic patient presenting
with tramadol intoxication. Our observation suggests that hyperinsulinemia could be the cause of the hypoglycaemia associated with tramadol
use
Expression profiling of migrated and invaded breast cancer cells predicts early metastatic relapse and reveals Krüppel-like factor 9 as a potential suppressor of invasive growth in breast cancer
Cell motility and invasion initiate metastasis. However, only a subpopulation of cancer cells within a tumor will ultimately become invasive. Due to this stochastic and transient nature, in an experimental setting, migrating and invading cells need to be isolated from the general population in order to study the gene expression profiles linked to these processes. This report describes microarray analysis on RNA derived from migrated or invaded subpopulations of triple negative breast cancer cells in a Transwell set-up, at two different time points during motility and invasion, pre-determined as “early” and “late” in real-time kinetic assessments. Invasion- and migration-related gene expression signatures were generated through comparison with non-invasive cells, remaining at the upper side of the Transwell membranes. Late-phase signatures of both invasion and migration indicated poor prognosis in a series of breast cancer data sets. Furthermore, evaluation of the genes constituting the prognostic invasion-related gene signature revealed Krüppel-like factor 9 (KLF9) as a putative suppressor of invasive growth in breast cancer. Next to loss in invasive vs non-invasive cell lines, KLF9 also showed significantly lower expression levels in the “early” invasive cell population, in several public expression data sets and in clinical breast cancer samples when compared to normal tissue. Overexpression of EGFP-KLF9 fusion protein significantly altered morphology and blocked invasion and growth of MDA-MB-231 cells in vitro. In addition, KLF9 expression correlated inversely with mitotic activity in clinical samples, indicating anti-proliferative effects
Array-Based DNA Methylation Profiling for Breast Cancer Subtype Discrimination
BACKGROUND: Abnormal DNA methylation is well established for breast cancer and contributes to its progression by silencing tumor suppressor genes. DNA methylation profiling platforms might provide an alternative approach to expression microarrays for accurate breast tumor subtyping. We sought to determine whether the distinction of the inflammatory breast cancer (IBC) phenotype from the non-IBC phenotype by transcriptomics could be sustained by methylomics. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation profiling on a cohort of IBC (N = 19) and non-IBC (N = 43) samples using the Illumina Infinium Methylation Assay. These results were correlated with gene expression profiles. Methylation values allowed separation of breast tumor samples into high and low methylation groups. This separation was significantly related to DNMT3B mRNA levels. The high methylation group was enriched for breast tumor samples from patients with distant metastasis and poor prognosis, as predicted by the 70-gene prognostic signature. Furthermore, this tumor group tended to be enriched for IBC samples (54% vs. 24%) and samples with a high genomic grade index (67% vs. 38%). A set of 16 CpG loci (14 genes) correctly classified 97% of samples into the low or high methylation group. Differentially methylated genes appeared to be mainly related to focal adhesion, cytokine-cytokine receptor interactions, Wnt signaling pathway, chemokine signaling pathways and metabolic processes. Comparison of IBC with non-IBC led to the identification of only four differentially methylated genes (TJP3, MOGAT2, NTSR2 and AGT). A significant correlation between methylation values and gene expression was shown for 4,981 of 6,605 (75%) genes. CONCLUSIONS/SIGNIFICANCE: A subset of clinical samples of breast cancer was characterized by high methylation levels, which coincided with increased DNMT3B expression. Furthermore, an association was observed with molecular signatures indicative of poor patient prognosis. The results of the current study also suggest that aberrant DNA methylation is not the main force driving the molecular biology of IBC
Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF.
Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses
Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting
Background: Molecular characterisation of single circulating tumour cells (CTCs) holds considerable promise for predictive biomarker assessment and to explore CTC heterogeneity. We evaluate a new method, the DEPArray system, that allows the dielectrophoretic manipulation and isolation of single and 100% purified groups of CTCs from pre-enriched blood samples and explore the feasibility of their molecular characterisation.Methods:Samples containing known numbers of two cell populations were used to assess cell loss during sample loading. Cultured breast cancer cells were isolated from spiked blood samples using CellSearch CTC and Profile kits. Single tumour cells and groups of up to 10 tumour cells were recovered with the DEPArray system and subjected to transcriptional and mutation analysis.Results:On average, 40% cell loss was observed when loading samples to the DEPArray system. Expected mutations in clinically relevant markers could be obtained for 60% of single recovered tumour cells and all groups of tumour cells. Reliable gene expression profiles were obtained from single cells and groups of up to 10 cells for 2 out of 3 spiked breast cancer cell lines.Conclusion:We describe a semiautomated workflow for the isolation of small groups of 1 to 10 tumour cells from whole blood samples and provide proof of principle for the feasibility of their comprehensive molecular characterisation
Free 25-Hydroxyvitamin D: Impact of Vitamin D Binding Protein Assays on Racial-Genotypic Associations
Context: Total 25-hydroxyvitamin D (25OHD) is a marker of vitamin D status and is lower in African Americans than in whites. Whether this difference holds for free 25OHOD (f25OHD) is unclear, considering reported genetic-racial differences in vitamin D binding protein (DBP) used to calculate f25OHD. Objectives: Our objective was to assess racial-geographic differences in f25OHD and to understand inconsistencies in racial associations with DBP and calculated f25OHD. Design: This study used a cross-sectional design. Setting: The general community in the United States, United Kingdom, and The Gambia were included in this study. Participants: Men in Osteoporotic Fractures in Men and Medical Research Council studies (N = 1057) were included. Exposures: Total 25OHD concentration, race, and DBP (GC) genotype exposures were included. Outcome Measures: Directly measured f25OHD, DBP assessed by proteomics, monoclonal and polyclonal immunoassays, and calculated f25OHD were the outcome measures. Results: Total 25OHD correlated strongly with directly measured f25OHD (Spearman r = 0.84). Measured by monoclonal assay, mean DBP in African-ancestry subjects was approximately 50% lower than in whites, whereas DBP measured by polyclonal DBP antibodies or proteomic methods was not lower in African-ancestry. Calculated f25OHD (using polyclonal DBP assays) correlated strongly with directly measured f25OHD (r = 0.80–0.83). Free 25OHD, measured or calculated from polyclonal DBP assays, reflected total 25OHD concentration irrespective of race and was lower in African Americans than in US whites. Conclusions: Previously reported racial differences in DBP concentration are likely from monoclonal assay bias, as there was no racial difference in DBP concentration by other methods. This confirms the poor vitamin D status of many African-Americans and the utility of total 25OHD in assessing vitamin D in the general population
Positioning aquatic animals with acoustic transmitters
Geolocating aquatic animals with acoustic tags has been ongoing for decades, relying on the detection of acoustic signals at multiple receivers with known positions to calculate a 2D or 3D position, and ultimately recreate the path of an aquatic animal from detections at fixed stations.This method of underwater geolocation is evolving with new software and hardware options available to help investigators design studies and calculate positions using solvers based predominantly on time-difference-of-arrival and time-of-arrival.We provide an overview of the considerations necessary to implement positioning in aquatic acoustic telemetry studies, including how to design arrays of receivers, test performance, synchronize receiver clocks and calculate positions from the detection data. We additionally present some common positioning algorithms, including both the free open-source solvers and the 'black-box' methods provided by some manufacturers for calculating positions.This paper is the first to provide a comprehensive overview of methods and considerations for designing and implementing better positioning studies that will support users, and encourage further knowledge advances in aquatic systems
Glucocorticosteroids Differentially Regulate MMP-9 and Neutrophil Elastase in COPD
Background: Chronic Obstructive Pulmonary Disease (COPD) is currently the fifth leading cause of death worldwide. Neutrophilic inflammation is prominent, worsened during infective exacerbations and is refractory to glucocorticosteroids (GCs). Deregulated neutrophilic inflammation can cause excessive matrix degradation through proteinase release. Gelatinase and azurophilic granules within neutrophils are a major source of matrix metalloproteinase (MMP)-9 and neutrophil elastase (NE), respectively, which are elevated in COPD. Methods: Secreted MMP-9 and NE activity in BALF were stratified according to GOLD severity stages. The regulation of secreted NE and MMP-9 in isolated blood neutrophils was investigated using a pharmacological approach. In vivo release of MMP-9 and NE in mice exposed to cigarette smoke (CS) and/or the TLR agonist lipopolysaccharide (LPS) in the presence of dexamethasone (Dex) was investigated. Results: Neutrophil activation as assessed by NE release was increased in severe COPD (36-fold, GOLD II vs. IV). MMP-9 levels (8-fold) and activity (21-fold) were also elevated in severe COPD, and this activity was strongly associated with BALF neutrophils (r = 0.92, p < 0.001), but not macrophages (r = 0.48, p = 0.13). In vitro, release of NE and MMP-9 from fMLP stimulated blood neutrophils was insensitive to Dex and attenuated by the PI3K inhibitor, wortmannin. In vivo, GC resistant neutrophil activation (NE release) was only seen in mice exposed to CS and LPS. In addition, GC refractory MMP-9 expression was only associated with neutrophil activation. Conclusions: As neutrophils become activated with increasing COPD severity, they become an important source of NE and MMP-9 activity, which secrete proteinases independently of TIMPs. Furthermore, as NE and MMP-9 release was resistant to GC, targeting of the PI3K pathway may offer an alternative pathway to combating this proteinase imbalance in severe COPD
- …