8,672 research outputs found

    Spatially Resolved Nonlinearity Measurements of YBa2_2Cu3_3O7d_{7-d} Bi-crystal Grain Boundaries

    Full text link
    We have developed a near-field microwave microscope to locally excite a superconducting film and measure second and third harmonic responses at microwave frequencies. We study the local nonlinear response of a YBa2_2Cu3_3O7d_{7-d} thin film grown on a bi-crystal SrTiO3_3 substrate. The location of the bi-crystal grain boundary is clearly identified by the microscope through higher harmonic response, and the spatial resolution is on the order of the magnetic loop probe size, about 500μm\mu m. The harmonic power and spatial resolution are successfully modeled with a one-dimensional extended Josephson junction simulation. From the model, the 2nd order harmonic response is dominated by Josephson vortex generation and flow. A geometry-free nonlinear scaling current density JNL104105A/cm2J_{NL}\simeq 10^4\sim 10^5 A/cm^2 is also exstracted from the data, indicating that the grain boundary weak link is the dominant nonlinear source in this case.Comment: 4pages, 4figure

    Doping dependent time-reversal symmetric nonlinearity of YBa_2Cu_3O_7-d thin films

    Full text link
    We have measured the temperature dependent third harmonic response from a series of under-doped YBa_2Cu_3O_7-d thin films to address the mechanism of nonlinearity in these samples. We find that the intrinsic Ginzburg-Landau nonlinearity near Tc is doping dependent, with the sample becoming more nonlinear as it is under-doped. The results are consistent with the doping dependence of the condensation energy of YBa_2Cu_3O_7-d.Comment: 2 pages, 3 figures, submitted to Physica C for M2S-Rio conference pres

    Modeling effects of nonbreeders on population growth estimates

    Get PDF
    Acknowledgements We thank the Beissinger lab and reviewers for helpful comments on manuscript drafts. This research was funded by a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme (project NON- BREEDERS). The contents of this paper reflect the views of the researchers, not the views of the European Commission. Data Accessibility R-code available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.t56cn (Lee, Reid & Beissinger, 2016).Peer reviewedPostprin

    Wireless Sensing of Lower Lip and Thumb-Index Finger ‘Ramp-and-Hold’ Isometric Force Dynamics in a Small Cohort of Unilateral MCA Stroke: Discussion of Preliminary Findings

    Get PDF
    Automated wireless sensing of force dynamics during a visuomotor control task was used to rapidly assess residual motor function during finger pinch (right and left hand) and lower lip compression in a cohort of seven adult males with chronic, unilateral middle cerebral artery (MCA) stroke with infarct confirmed by anatomic magnetic resonance imaging (MRI). A matched cohort of 25 neurotypical adult males served as controls. Dependent variables were extracted from digitized records of ‘ramp-and-hold’ isometric contractions to target levels (0.25, 0.5, 1, and 2 Newtons) presented in a randomized block design; and included force reaction time, peak force, and dF/dtmax associated with force recruitment, and end-point accuracy and variability metrics during the contraction hold-phase (mean, SD, criterion percentage ‘on-target’). Maximum voluntary contraction force (MVCF) was also assessed to establish the force operating range. Results based on linear mixed modeling (LMM, adjusted for age and handedness) revealed significant patterns of dissolution in fine force regulation among MCA stroke participants, especially for the contralesional thumb-index finger followed by the ipsilesional digits, and the lower lip. For example, the contralesional thumb-index finger manifest increased reaction time, and greater overshoot in peak force during recruitment compared to controls. Impaired force regulation among MCA stroke participants during the contraction hold-phase was associated with significant increases in force SD, and dramatic reduction in the ability to regulate force output within prescribed target force window (±5% of target). Impaired force regulation during contraction hold-phase was greatest in the contralesional hand muscle group, followed by significant dissolution in ipsilateral digits, with smaller effects found for lower lip. These changes in fine force dynamics were accompanied by large reductions in the MVCF with the LMM marginal means for contralesional and ipsilesional pinch forces at just 34.77% (15.93 N vs. 45.82 N) and 66.45% (27.23 N vs. 40.98 N) of control performance, respectively. Biomechanical measures of fine force and MVCF performance in adult stroke survivors provide valuable information on the profile of residual motor function which can help inform clinical treatment strategies and quantitatively monitor the efficacy of rehabilitation or neuroprotection strategies

    Law-Based Arguments and Messages to Advocate for Later School Start Time Policies in the United States

    Get PDF
    The increasing scientific evidence that early school start times are harmful to the health and safety of teenagers has generated much recent debate about changing school start times policies for adolescent students. Although efforts to promote and implement such changes have proliferated in the United States in recent years, they have rarely been supported by law-based arguments and messages that leverage the existing legal infrastructure regulating public education and child welfare in the United States. Furthermore, the legal bases to support or resist such changes have not been explored in detail to date. This article provides an overview of how law-based arguments and messages can be constructed and applied to advocate for later school start time policies in U.S. public secondary schools. The legal infrastructure impacting school start time policies in the United States is briefly reviewed, including descriptions of how government regulates education, what legal obligations school officials have concerning their students\u27 welfare, and what laws and public policies currently exist that address adolescent sleep health and safety. On the basis of this legal infrastructure, some hypothetical examples of law-based arguments and messages that could be applied to various types of advocacy activities (e.g., litigation, legislative and administrative advocacy, media and public outreach) to promote later school start times are discussed. Particular consideration is given to hypothetical arguments and messages aimed at emphasizing the consistency of later school start time policies with existing child welfare law and practices, legal responsibilities of school officials and governmental authorities, and societal values and norms

    Robust topology optimization of three-dimensional photonic-crystal band-gap structures

    Get PDF
    We perform full 3D topology optimization (in which "every voxel" of the unit cell is a degree of freedom) of photonic-crystal structures in order to find optimal omnidirectional band gaps for various symmetry groups, including fcc (including diamond), bcc, and simple-cubic lattices. Even without imposing the constraints of any fabrication process, the resulting optimal gaps are only slightly larger than previous hand designs, suggesting that current photonic crystals are nearly optimal in this respect. However, optimization can discover new structures, e.g. a new fcc structure with the same symmetry but slightly larger gap than the well known inverse opal, which may offer new degrees of freedom to future fabrication technologies. Furthermore, our band-gap optimization is an illustration of a computational approach to 3D dispersion engineering which is applicable to many other problems in optics, based on a novel semidefinite-program formulation for nonconvex eigenvalue optimization combined with other techniques such as a simple approach to impose symmetry constraints. We also demonstrate a technique for \emph{robust} topology optimization, in which some uncertainty is included in each voxel and we optimize the worst-case gap, and we show that the resulting band gaps have increased robustness to systematic fabrication errors.Comment: 17 pages, 9 figures, submitted to Optics Expres
    corecore