39 research outputs found

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties

    Romosozumab in Postmenopausal Women with Low Bone Mineral Density.

    Full text link
    Background Sclerostin is an osteocyte-derived inhibitor of osteoblast activity. The monoclonal antibody romosozumab binds to sclerostin and increases bone formation. Methods In a phase 2, multicenter, international, randomized, placebo-controlled, parallel-group, eight-group study, we evaluated the efficacy and safety of romosozumab over a 12-month period in 419 postmenopausal women, 55 to 85 years of age, who had low bone mineral density (a T score of -2.0 or less at the lumbar spine, total hip, or femoral neck and -3.5 or more at each of the three sites). Participants were randomly assigned to receive subcutaneous romosozumab monthly (at a dose of 70 mg, 140 mg, or 210 mg) or every 3 months (140 mg or 210 mg), subcutaneous placebo, or an open-label active comparator - oral alendronate (70 mg weekly) or subcutaneous teriparatide (20 mug daily). The primary end point was the percentage change from baseline in bone mineral density at the lumbar spine at 12 months. Secondary end points included percentage changes in bone mineral density at other sites and in markers of bone turnover. Results All dose levels of romosozumab were associated with significant increases in bone mineral density at the lumbar spine, including an increase of 11.3% with the 210-mg monthly dose, as compared with a decrease of 0.1% with placebo and increases of 4.1% with alendronate and 7.1% with teriparatide. Romosozumab was also associated with large increases in bone mineral density at the total hip and femoral neck, as well as transitory increases in bone-formation markers and sustained decreases in a bone-resorption marker. Except for mild, generally nonrecurring injection-site reactions with romosozumab, adverse events were similar among groups. Conclusions In postmenopausal women with low bone mass, romosozumab was associated with increased bone mineral density and bone formation and with decreased bone resorption. (Funded by Amgen and UCB Pharma; ClinicalTrials.gov number, NCT00896532 .)

    Procognitive and neuroprotective activity of a novel alpha7 nicotinic acetylcholine receptor agonist for treatment of neurodegenerative and cognitive disorders

    No full text
    ABSTRACT The ␣7 nicotinic acetylcholine receptor (nAChR) is a promising target for treatment of cognitive dysfunction associated with Alzheimer's disease and schizophrenia. Here, we report the pharmacological properties of 5-morpholin-4-yl-pentanoic acid (4-pyridin-3-yl-phenyl)-amide [SEN12333 (WAY-317538)], a novel selective agonist of ␣7 nAChR. SEN12333 shows high affinity for the rat ␣7 receptor expressed in GH4C1 cells (K i ϭ 260 nM) and acts as full agonist in functional Ca 2ϩ flux studies (EC 50 ϭ 1.6 M). In whole-cell patch-clamp recordings, SEN12333 activated peak currents and maximal total charges similar to acetylcholine (EC 50 ϭ 12 M). The compound did not show agonist activity at other nicotinic receptors tested and acted as a weak antagonist at ␣3-containing receptors. SEN12333 treatment (3 mg/kg i.p.) improved episodic memory in a novel object recognition task in rats in conditions of spontaneous forgetting as well as cognitive disruptions induced via glutamatergic [5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate); MK-801] or cholinergic (scopolamine) mechanisms. This improvement was blocked by the ␣7-selective antagonist methyllycaconitine, indicating that it is mediated by ␣7 activation. SEN12333 also prevented a scopolamine-induced deficit in a passive avoidance task. In models targeting other cognitive domains, including attention and perceptual processing, SEN12333 normalized the apomorphine-induced deficit of prepulse inhibition. Neuroprotection of SEN12333 was demonstrated in quisqualate-lesioned animals in which treatment with SEN12333 (3 mg/kg/day i.p.) resulted in a significant protection of choline acetyltransferase-positive neurons in the lesioned hemisphere. Cumulatively, our results demonstrate that the novel ␣7 nAChR agonist SEN12333 has procognitive and neuroprotective properties, further demonstrating utility of ␣7 agonists for treatment of neurodegenerative and cognitive disorders. The family of nicotinic acetylcholine receptors, which comprises 16 different subunits in human (␣1-7, ␣9 -10, ␤1-4, ␦, ε, and ␥) that can form many functional homo-and heteropentameric receptor ion channel combinations, contributes to cholinergic neurotransmission in the nervous system and at the neuromuscular junction. The ␣7 nicotinic acetylcholine receptors (nAChRs) are rapidly desensitizing ligand-gated ion channels that are abundantly expressed in the cerebral cortex and the hippocampus, a limbic structure intimately linked to attention processing and memory formatio

    Understanding the cool DA white dwarf pulsator G29-38

    Get PDF
    The white dwarfs are promising laboratories for the study of cosmochronology and stellar evolution. Through observations of the pulsating white dwarfs, we can measure their internal structures and compositions, critical to understanding post-main-sequence evolution, along with their cooling rates, which will allow us to calibrate their ages directly. The most important set of white dwarf variables to measure are the oldest of the pulsators, the cool DA variables (DAVs), which have not been explored previously through asteroseismology due to their complexity and instability. Through a time-series photometry data set spanning 10 yr, we explore the pulsation spectrum of the cool DAV, G29-38 and find an underlying structure of 19 (not including multiplet components) normal-mode, probably l=1 pulsations amidst an abundance of time variability and linear combination modes. Modeling results are incomplete, but we suggest possible starting directions and discuss probable values for the stellar mass and hydrogen layer size. For the first time, we have made sense out of the complicated power spectra of a large-amplitude DA pulsator. We have shown that its seemingly erratic set of observed frequencies can be understood in terms of a recurring set of normal-mode pulsations and their linear combinations. With this result, we have opened the interior secrets of the DAVs to future asteroseismological modeling, thereby joining the rest of the known white dwarf pulsators

    Tetrahydrocarbazole-Based Serotonin Reuptake Inhibitor/Dopamine D2 Partial Agonists for the Potential Treatment of Schizophrenia

    No full text
    A 5-fluoro-tetrahydrocarbazole serotonin reuptake inhibitor (SRI) building block was combined with a variety of linkers and dopamine D2 receptor ligands in an attempt to identify potent D2 partial agonist/SRI molecules for treatment of schizophrenia. This approach has the potential to treat a broader range of symptoms compared to existing therapies. Selected compounds in this series demonstrate high affinity for both targets and D2 partial agonism in cell-based and in vivo assays

    WS-50030 [7-{4-[3-(1H-Inden-3-Yl)Propyl]Piperazin-1-Yl}-1,3-Benzoxazol- 2(3H)-One]a Novel Dopamine D2 Receptor Partial Agonist/Serotonin Reuptake Inhibitor with Preclinical Antipsychotic-Like and Antidepressant-Like Activity

    No full text
    The preclinical characterization of WS-50030 [7-{4-[3-(1Hinden-3-yl)propyl] piperazin-1-yl}-1,3-benzoxazol-2(3H)-one] is described. In vitro binding and functional studies revealed highest affinity to the D2 receptor (D2L Ki, 4.0 nM) and serotonin transporter (Ki, 7.1 nM), potent D2 partial agonist activity (EC50, 0.38 nM; Emax, 30%), and complete block of the serotonin transporter (IC50, 56.4 nM). Consistent with this in vitro profile, WS-50030 (10 mg/kg/day, 21 days) significantly increased extracellular 5-HT in the rat medial prefrontal cortex, short-term WS-50030 treatment blocked apomorphine-induced climbing (ID50, 0.51 mg/kg) in a dose range that produced minimal catalepsy in mice and induced low levels of contralateral rotation in rats with unilateral substantia nigra 6-hydroxydopamine lesions (10 mg/kg i.p.), a behavioral profile similar to that of the D2 partial agonist aripiprazole. In a rat model predictive of antipsychotic-like activity, WS-50030 and aripiprazole reduced conditioned avoidance responding by 42 and 55% at 10 mg/kg, respectively. Despite aripiprazole\u27s reported lack of effect on serotonin transporters, long-term treatment with aripiprazole or WS-50030 reversed olfactory bulbectomy-induced hyperactivity at doses that did not reduce activity in sham-operated rats, indicating antidepressant-like activity for both compounds. Despite possessing serotonin reuptake inhibitory activity in addition to D2 receptor partial agonism, WS-50030 displays activity in preclinical models predictive of antipsychotic- and antidepressant efficacy similar to aripiprazole, suggesting potential efficacy of WS-50030 versus positive and negative symptoms of schizophrenia, comorbid mood symptoms, bipolar disorder, major depressive disorder, and treatment-resistant depression. Furthermore, WS-50030 provides a tool to further explore how combining these mechanisms might differentiate from other antipsychotics or antidepressants
    corecore