207 research outputs found

    Nesting activity time budgets of bald eagles in southeast Alaska

    Get PDF

    Diet and Macronutrient Optimization in Wild Ursids: Grizzly Bears Versus Black Bears

    Get PDF
    When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy.  In the wild, this ability is likely constrained.  By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004–2006.  Based on published data, we estimated foods and macronutrients as percentages of daily energy intake.  Using principal components and cluster analyses, we identified 14 daily diet types.  Only 4 diets, accounting for 21% of days, provided optimal protein levels.  Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption.  Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46–47% of daily energy for both species.  As predicted: 1) daily diets dominated by vertebrates were positively associated with grizzly bears and protein intake was positively associated with body mass; 2) diets dominated by fruits were positively associated with black bears; and 3) mean protein was highest during spring, when high-energy foods were scarce, however it was also higher than optimal during summer and fall.  Although optimal gain of body mass was constrained, bears opted for the energetically superior trade-off of consuming high-energy, high-protein foods.  Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in this region

    Managing Human-Habituated Bears to Enhance Survival, Habitat Effectiveness, and Public Viewing

    Get PDF
    The negative impacts on bears (Ursus spp.) from human activities associated with roads and developments are well documented. These impacts include displacement of bears from high-quality foods and habitats, diminished habitat effectiveness, and reduced survival rates. Additionally, increased public visitations to national parks accompanied with benign encounters with bears along park roads have caused more bears to habituate to the presence of people. In some contexts, habituation can predispose bears to being exposed to and rewarded by anthropogenic foods, which can also lower survival rates. The managers and staff of Yellowstone National Park located in Wyoming, Montana, and Idaho, USA, and Grand Teton National Park in northwestern Wyoming, USA have implemented several proactive strategies to mitigate the negative aspects of bear habituation. These strategies include providing park visitors with educational information on bear viewing etiquette, managing roadside viewing opportunities, installing bear-resistant infrastructure, hazing bears from developments, enforcing food and garbage storage regulations, and making human activities as predictable as possible to bears. Under the current management strategies, thousands of visitors are still able to view, photograph, and appreciate bears while visiting these parks each year. The opportunity to view bears provides a positive visitor experience and contributes millions of dollars to the local economies of park gateway communities. Positive bear viewing experiences also help build an important appreciation and conservation ethic for bears in people that visit national parks. For many years, managers were concerned about decreasing and threatened bear populations. Now more jurisdictions are facing new challenges caused by increasing bear populations. This paper highlights a successful attempt to address these issues

    Influence of Whitebark Pine Decline on Fall Habitat Use and Movements of Grizzly Bears in the Greater Yellowstone Ecosystem

    Get PDF
    Seeds of whitebark pine (WBP; Pinus albicaulis) are a major food item for grizzly bears (Ursus arctos) in the greater Yellowstone ecosystem. Higher rates of bear mortality and bear-human conflicts are linked with low WBP productivity. Recently, infestations of mountain pine beetle (Dendroctonus ponderosae) have killed many mature, cone-bearing WBP trees. We investigated whether this decline caused bears to reduce their use of WBP and increase use of areas near humans. We used 52,332 GPS locations of 72 individuals (89 bear-years) monitored during fall (15 Aug–30 Sep) to examine temporal changes in habitat use and movements during 2000–2011. We calculated a Manley-Chesson (MC) index for selectivity of mapped WBP habitats for each individual within its 100% local convex hull home range, and determined dates of WBP use. One third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index > 0.5, indicating selection for WBP habitats. Over the study period, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, 78 percent of bears selected for secure habitat (areas ? 500 m from roads), but mean MC index decreased over the study period during years of good WBP productivity. The foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. However, the reduction in mortality risk associated with use of WBP habitat may be diminishing for bears in multiple-use areas

    Trends in Causes and Distribution, and Effects of Whitebark Pine Decline on Grizzly Bear Mortality in the Greater Yellowstone Ecosystem

    Get PDF
    Documented grizzly bear (Ursus arctos) mortalities have been increasing in recent years in the Greater Yellowstone Ecosystem (GYE), due, in part, to increases in bear numbers and range expansion. Previous research has documented that variable seed production of whitebark pine (WBP; Pinus albicaulis), an important fall food, is inversely related to grizzly bear fall mortality.  However, WBP has experienced widespread mortality during the last decade because of mountain pine beetle (Dendroctonus ponderosae) infestations. We investigated trends in causes and distribution of human-caused mortalities for independent-aged (? 2 yrs old) grizzly bears in the GYE during 1975–2012, and the effect of WBP cone production on numbers of fall (> 1 August) mortalities (n = 172) during the period of WBP decline (2000-2012) using Poisson regression. During 1975–1982, 91 percent of mortalities occurred within the Grizzly Bear Recovery Zone and primary causes were poaching/malicious killings and losses related to conflicts with livestock. During the two most recent decades most mortalities were associated with ungulate hunting, usually involving self-defense kills, or anthropogenic sites, and an increasing percentage of mortalities occurred outside the recovery zone. Using predictor variables of cone production, sex, location in or out of the Recovery Zone, and year suggests: 1) annual cone production was still predictive of human-caused fall mortalities, 2) no evidence of a difference in annual numbers of fall mortalities between males and females, and 3) an increase in annual mortalities over the study period, with most of this increase outside the Recovery Zone

    Estimating Grizzly Bear Use of Large Ungulate Carcasses With GPS Telemetry Data

    Get PDF
    Ungulate meat is among the most calorie-rich food sources available to grizzly bears  (Ursus arctos) in the greater Yellowstone ecosystem (GYE). However, the ephemeral and unpredictable nature of carcasses makes them difficult to study and their influence on grizzly bear foraging and spatial ecology is poorly understood. We developed a spatial-clustering technique specifically for detecting grizzly bear use of large ungulate carcasses using Global Positioning System (GPS) telemetry locations (n = 54 bear years). We used the DBScan algorithm to identify GPS clusters of individual bears (n = 2,038) and intersected these clusters with an independent dataset of site  visits to recent bear movement paths based from randomly selected days (n = 732 site visits; 2004–2011) resulting in 174 clusters associated with field measured bear behavior. Using a suite of predictor variables derived from GPS telemetry locations, e.g., duration of cluster, area used, activity sensor values, re-visitation rate, we used multinomial logistic regression to predict the probability of belonging to  each of the five response classes (resting, multiple-use, low-biomass carcass, high-biomass carcass, old carcass). Focusing on the high-biomass carcass category, for which our top model correctly classified 88 percent of the carcasses correctly, we applied our approach to a larger dataset of GPS data to examine trends in large-ungulate carcass using of grizzly bears in the GYE from 2002-2011. We found quantitative support for a positive effect of year and mortality adjusted white bark pine cone counts on the carcass-use index during the fall months (Sep and Oct) from 2002-2011

    A recurrent mitochondrial p.Trp22Arg NDUFB3 variant causes a distinctive facial appearance, short stature and a mild biochemical and clinical phenotype

    Get PDF
    Background Isolated Complex I deficiency is the most common paediatric mitochondrial disease presentation, associated with poor prognosis and high mortality. Complex I comprises 44 structural subunits with at least 10 ancillary proteins; mutations in 29 of these have so far been associated with mitochondrial disease but there are limited genotype-phenotype correlations to guide clinicians to the correct genetic diagnosis. Methods Patients were analysed by whole-exome sequencing, targeted capture or candidate gene sequencing. Clinical phenotyping of affected individuals was performed. Results We identified a cohort of 10 patients from 8 families (7 families are of unrelated Irish ancestry) all of whom have short stature (C, p.Trp22Arg NDUFB3 variant. Two sibs presented with primary short stature without obvious metabolic dysfunction. Analysis of skeletal muscle from three patients confirmed a defect in Complex I assembly. Conclusions Our report highlights that the long-term prognosis related to the p.Trp22Arg NDUFB3 mutation can be good, even for some patients presenting in acute metabolic crisis with evidence of an isolated Complex I deficiency in muscle. Recognition of the distinctive facial features—particularly when associated with markers of mitochondrial dysfunction and/or Irish ancestry—should suggest screening for the p.Trp22Arg NDUFB3 mutation to establish a genetic diagnosis, circumventing the requirement of muscle biopsy to direct genetic investigations
    • …
    corecore