15 research outputs found

    Chemical and physical studies of type 3 chondrites 12: The metamorphic history of CV chondrites and their components

    Get PDF
    The induced thermoluminescence (TL) properties of 16 CV and CV-related chondrites, four CK chondrites and Renazzo (CR2) have been measured in order to investigate their metamorphic history. The petrographic, mineralogical and bulk compositional differences among the CV chondrites indicate that the TL sensitivity of the approximately 130 C TL peak is reflecting the abundance of ordered feldspar, especially in chondrule mesostasis, which in turn reflects parent-body metamorphism. The TL properties of 18 samples of homogenized Allende powder heated at a variety of times and temperatures, and cathodoluminescence mosaics of Axtell and Coolidge, showed results consistent with this conclusion. Five refractory inclusions from Allende, and separates from those inclusions, were also examined and yielded trends reflecting variations in mineralogy indicative of high peak temperatures (either metamorphic or igneous) and fairly rapid cooling. The CK chondrites are unique among metamorphosed chondrites in showing no detectable induced TL, which is consistent with literature data that suggests very unusual feldspar in these meteorites. Using TL sensitivity and several mineral systems and allowing for the differences in the oxidized and reduced subgroups, the CV and CV-related meteorites can be divided into petrologic types analogous to those of the ordinary and CO type 3 chondrites. Axtell, Kaba, Leoville, Bali, Arch and ALHA81003 are type 3.0-3.1, while ALH84018, Efremovka, Grosnaja, Allende and Vigarano are type 3.2-3.3 and Coolidge and Loongana 001 are type 3.8. Mokoia is probably a breccia with regions ranging in petrologic type from 3.0 to 3.2. Renazzo often plots at the end of the reduced and oxidized CV chondrite trends, even when those trends diverge, suggesting that in many respects it resembles the unmetamorphosed precursors of the CV chondrites. The low-petrographic types and low-TL peak temperatures of all samples, including the CV3.8 chondrites, indicates metamorphism in the stability field of low feldspar (i.e., less than 800 C) and a metamorphic history similar to that of the CO chondrites but unlike that of the ordinary chondrites

    Continuous and transparent multimodal authentication: reviewing the state of the art

    Get PDF
    Individuals, businesses and governments undertake an ever-growing range of activities online and via various Internet-enabled digital devices. Unfortunately, these activities, services, information and devices are the targets of cybercrimes. Verifying the user legitimacy to use/access a digital device or service has become of the utmost importance. Authentication is the frontline countermeasure of ensuring only the authorized user is granted access; however, it has historically suffered from a range of issues related to the security and usability of the approaches. They are also still mostly functioning at the point of entry and those performing sort of re-authentication executing it in an intrusive manner. Thus, it is apparent that a more innovative, convenient and secure user authentication solution is vital. This paper reviews the authentication methods along with the current use of authentication technologies, aiming at developing a current state-of-the-art and identifying the open problems to be tackled and available solutions to be adopted. It also investigates whether these authentication technologies have the capability to fill the gap between high security and user satisfaction. This is followed by a literature review of the existing research on continuous and transparent multimodal authentication. It concludes that providing users with adequate protection and convenience requires innovative robust authentication mechanisms to be utilized in a universal level. Ultimately, a potential federated biometric authentication solution is presented; however it needs to be developed and extensively evaluated, thus operating in a transparent, continuous and user-friendly manner

    4-(Tris(4-methyl-1<i>H</i>-pyrazol-1-yl)methyl)aniline

    No full text
    4-(tris(4-methyl-1H-pyrazol-1-yl)methyl)aniline was prepared in a 63% yield utilizing a C–F activation strategy from a mixture of 4-(trifluoromethyl)aniline, 4-methylpyrazole, and KOH in dimethylsulfoxide (DMSO). The identity of the product was confirmed by nuclear magnetic resonance spectroscopy, infrared spectroscopy, mass spectrometry, and single-crystal analysis. An analysis of crystals grown from the layering method (CH2Cl2/acetone/pentane) indicated two distinct polymorphs of the title compound. Moreover, density functional theory calculations utilizing the MN15L density functional and the def2-TZVP basis set indicated that 4-(tris(4-methyl-1H-pyrazol-1-yl)methyl)aniline forms with similar energetics to the previously reported unmethylated analog

    Placental Metabolomics of Fetal Growth Restriction

    No full text
    Fetal growth restriction is an obstetrical pathological condition that causes high neonatal mortality and morbidity. The mechanisms of its onset are not completely understood. Metabolites were extracted from 493 placentas from non-complicated pregnancies in Hamilton Country, TN (USA), and analyzed by gas chromatography&ndash;mass spectrometry (GC&ndash;MS). Newborns were classified according to raw fetal weight (low birth weight (LBW; &lt;2500 g) and non-low birth weight (Non-LBW; &gt;2500 g)), and according to the calculated birth weight centile as it relates to gestational age (small for gestational age (SGA), large for gestational age (LGA), and adequate for gestational age (AGA)). Mothers of LBW infants had a lower pre-pregnancy weight (66.2 &plusmn; 17.9 kg vs. 73.4 &plusmn; 21.3 kg, p &lt; 0.0001), a lower body mass index (BMI) (25.27 &plusmn; 6.58 vs. 27.73 &plusmn; 7.83, p &lt; 0.001), and a shorter gestation age (246.4 &plusmn; 24.0 days vs. 267.2 &plusmn; 19.4 days p &lt; 0.001) compared with non-LBW. Marital status, tobacco use, and fetus sex affected birth weight centile classification according to gestational age. Multivariate statistical comparisons of the extracted metabolomes revealed that asparagine, aspartic acid, deoxyribose, erythritol, glycerophosphocholine, tyrosine, isoleucine, serine, and lactic acid were higher in both SGA and LBW placentas, while taurine, ethanolamine, &beta;-hydroxybutyrate, and glycine were lower in both SGA and LBW. Several metabolic pathways are implicated in fetal growth restriction, including those related to the hypoxia response and amino-acid uptake and metabolism. Inflammatory pathways are also involved, suggesting that fetal growth restriction might share some mechanisms with preeclampsia

    Placental Metabolomics of Fetal Growth Restriction

    No full text
    Fetal growth restriction is an obstetrical pathological condition that causes high neonatal mortality and morbidity. The mechanisms of its onset are not completely understood. Metabolites were extracted from 493 placentas from non-complicated pregnancies in Hamilton Country, TN (USA), and analyzed by gas chromatography–mass spectrometry (GC–MS). Newborns were classified according to raw fetal weight (low birth weight (LBW; &lt;2500 g) and non-low birth weight (Non-LBW; &gt;2500 g)), and according to the calculated birth weight centile as it relates to gestational age (small for gestational age (SGA), large for gestational age (LGA), and adequate for gestational age (AGA)). Mothers of LBW infants had a lower pre-pregnancy weight (66.2 ± 17.9 kg vs. 73.4 ± 21.3 kg, p &lt; 0.0001), a lower body mass index (BMI) (25.27 ± 6.58 vs. 27.73 ± 7.83, p &lt; 0.001), and a shorter gestation age (246.4 ± 24.0 days vs. 267.2 ± 19.4 days p &lt; 0.001) compared with non-LBW. Marital status, tobacco use, and fetus sex affected birth weight centile classification according to gestational age. Multivariate statistical comparisons of the extracted metabolomes revealed that asparagine, aspartic acid, deoxyribose, erythritol, glycerophosphocholine, tyrosine, isoleucine, serine, and lactic acid were higher in both SGA and LBW placentas, while taurine, ethanolamine, β-hydroxybutyrate, and glycine were lower in both SGA and LBW. Several metabolic pathways are implicated in fetal growth restriction, including those related to the hypoxia response and amino-acid uptake and metabolism. Inflammatory pathways are also involved, suggesting that fetal growth restriction might share some mechanisms with preeclampsia

    Pseudomonas aeruginosa responds to exogenous polyunsaturated fatty acids (PUFAs) by modifying phospholipid composition, membrane permeability, and phenotypes associated with virulence

    No full text
    Abstract Background Pseudomonas aeruginosa, a common opportunistic pathogen, is known to cause infections in a variety of compromised human tissues. An emerging mechanism for microbial survival is the incorporation of exogenous fatty acids to alter the cell’s membrane phospholipid profile. With these findings, we show that exogenous fatty acid exposure leads to changes in bacterial membrane phospholipid structure, membrane permeability, virulence phenotypes and consequent stress responses that may influence survival and persistence of Pseudomonas aeruginosa. Results Thin-layer chromatography and ultra performance liquid chromatography / ESI-mass spectrometry indicated alteration of bacterial phospholipid profiles following growth in the presence of polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation). The exogenously supplied fatty acids were incorporated into the major bacterial phospholipids phosphatidylethanolamine and phosphatidylglycerol. The incorporation of fatty acids increased membrane permeability as judged by both accumulation and exclusion of ethidium bromide. Individual fatty acids were identified as modifying resistance to the cyclic peptide antibiotics polymyxin B and colistin, but not the beta-lactam imipenem. Biofilm formation was increased by several PUFAs and significant fluctuations in swimming motility were observed. Conclusions Our results emphasize the relevance and complexity of exogenous fatty acids in the membrane physiology and pathobiology of a medically important pathogen. P. aeruginosa exhibits versatility with regard to utilization of and response to exogenous fatty acids, perhaps revealing potential strategies for prevention and control of infection

    A Metabolomics-Based Screening Proposal for Colorectal Cancer

    No full text
    Colorectal cancer (CRC) is a high incidence disease, characterized by high morbidity and mortality rates. Early diagnosis remains challenging because fecal occult blood screening tests have performed sub-optimally, especially due to hemorrhoidal, inflammatory, and vascular diseases, while colonoscopy is invasive and requires a medical setting to be performed. The objective of the present study was to determine if serum metabolomic profiles could be used to develop a novel screening approach for colorectal cancer. Furthermore, the study evaluated the metabolic alterations associated with the disease. Untargeted serum metabolomic profiles were collected from 100 CRC subjects, 50 healthy controls, and 50 individuals with benign colorectal disease. Different machine learning models, as well as an ensemble model based on a voting scheme, were built to discern CRC patients from CTRLs. The ensemble model correctly classified all CRC and CTRL subjects (accuracy = 100%) using a random subset of the cohort as a test set. Relevant metabolites were examined in a metabolite-set enrichment analysis, revealing differences in patients and controls primarily associated with cell glucose metabolism. These results support a potential use of the metabolomic signature as a non-invasive screening tool for CRC. Moreover, metabolic pathway analysis can provide valuable information to enhance understanding of the pathophysiological mechanisms underlying cancer. Further studies with larger cohorts, including blind trials, could potentially validate the reported results

    The Metabolomic Approach for the Screening of Endometrial Cancer: Validation from a Large Cohort of Women Scheduled for Gynecological Surgery

    No full text
    Endometrial cancer (EC) is the most common gynecological neoplasm in high-income countries. Five-year survival rates are related to stage at diagnosis, but currently, no validated screening tests are available in clinical practice. The metabolome offers an unprecedented overview of the molecules underlying EC. In this study, we aimed to validate a metabolomics signature as a screening test for EC on a large study population of symptomatic women. Serum samples collected from women scheduled for gynecological surgery (n = 691) were separated into training (n = 90), test (n = 38), and validation (n = 563) sets. The training set was used to train seven classification models. The best classification performance during the training phase was the PLS-DA model (96% accuracy). The subsequent screening test was based on an ensemble machine learning algorithm that summed all the voting results of the seven classification models, statistically weighted by each models' classification accuracy and confidence. The efficiency and accuracy of these models were evaluated using serum samples taken from 871 women who underwent endometrial biopsies. The EC serum metabolomes were characterized by lower levels of serine, glutamic acid, phenylalanine, and glyceraldehyde 3-phosphate. Our results illustrate that the serum metabolome can be an inexpensive, non-invasive, and accurate EC screening test
    corecore