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Abstract The induced thermoluminescence (TL) properties of 16 CV and CV-related chondrites, four CK

chondrites and Renazzo (CR2) have been measured in order to investigate their metamorphic history. The

petrographic, mineralogical and bulk compositional differences among the CV chondrites indicate that the

TL sensitivity of the -130 °C TL peak is reflecting the abundance of ordered feldspar, especially in

chondrule mesostasis, which in turn reflects parent-body metamorphism. The TL properties of 18 samples of

homogenized Allende powder heated at a variety of times and temperatures, and cathodoluminescence

mosaics of Axtell and Coolidge, showed results consistent with this conclusion. Five refractory inclusions

from Allende, and separates from those inclusions, were also examined and yielded trends reflecting

variations in mineralogy indicative of high peak temperatures (either metamorphic or igneous) and fairly

rapid cooling. The CK chondrites are unique among metamorphosed chondrites in showing no detectable

induced TL, which is consistent with literature data that suggests very unusual feldspar in these meteorites.

Using TL sensitivity and several mineral systems and allowing for the differences in the oxidized and

reduced subgroups, the CV and CV-related meteorites can be divided into petrologic types analogous to

those of the ordinary and CO type 3 chondrites. Axtell, Kaba, Leoville, Bali, Arch and ALHA81003 are type

3.0-3.1, while ALH84018, Efremovka, Grosnaja, Allende and Vigarano are type 3.2-3.3 and Coolidge and

Loongana 001 are type 3.8. Mokoia is probably a breccia with regions ranging in petrologic type from 3.0 to

3.2. Renazzo often plots at the end of the reduced and oxidized CV chondrite trends, even when those trends

diverge, suggesting that in many respects it resembles the unmetamorphosed precursors of the CV

chondrites. The low-petrographic types and low-TL peak temperatures of all samples, including the CV3.8

chondrites, indicates metamorphism in the stability field of low feldspar (i.e., <800 °C) and a metamorphic

history similar to that of the CO chondrites but unlike that of the ordinary chondrites.

INTRODUCTION

Virtually all classes of chondrite have experienced some level of

parent body metamorphism; although in the case of type 1 and 2

carbonaceous chondrites the metamorphism involved considerable

aqueous alteration. Both the type 3 ordinary chondrites and the CO

chondrites display mineralogical and petrographic evidence for

metamorphic alteration that can be evaluated with a high degree of

precision using induced thermoluminescence (TL) measurements,

although the time-temperature histories of the ordinary and CO

chondrites are quite different (Dodd et aL, 1967; McSween, 1977a;

Keck and Sears, 1987; Scott and Jones, 1990; Sears et al., 1991a, b).

The present paper extends our studies of metamorphism of type 3

chondrites to the CV and the possibly related CK chondrites

(Kallemeyn et al., 1991 ).

Compositional equilibration between refractory inclusions and

the ferromagnesian components, and variations in the homogen-

ization of matrix olivines, suggests that the CV chondrites have

suffered various levels of parent-body metamorphism (McSween,

1977b; Peck, 1984; Scott et aL, 1988). It has been proposed that

metamorphism increased along the series Kaba, Mokoia, Vigarano,
Grosnaja and Allende. Since the CV chondrites consist of both

oxidized and reduced subgroups, a single metamorphic series is

precluded although two parallel series are possible (McSween,

1977b). Recently, Weinbruch et al. (1993) estimated spinel-olivine

equilibration temperatures for Allende -625 °C and equilibration

temperatures based on olivine profiles of ~325 °C. Guimon and

Sears (1986) suggested <600 °C based on induced TL data. Of

particular interest are the refractory inclusions (or, calcium- and

aluminum-rich inclusions, CAIs) in CV chondrites, which exhibit a

number of properties that suggest a complex history (MacPherson et

al., 1988). it has been argued that some Allende inclusions were

metamorphosed prior to emplacement in the meteorites (Meeker et

at., 1983), although MacPherson et aL (1988) argue that the features

in question are igneous in origin.

Here we report induced TL measurements for 16 CV and CV-

related chondrites and Renazzo, a CR chondrite, and five of the

refractory inclusions and their mineral separates from the Meeker et

al. (1983) study of Allende. We also prepared cathodoluminescence

(CL) images of polished sections of selected CV chondrites. We

heated samples of homogenized Allende powder for 1-100 h at

500-1000 °C (Guimon and Sears, 1986), since such experiments

have proved essential in understanding the TL data of other classes.

EXPERIMENTAL

Samples

The samples we studied are listed in Tables 1 and 2. They consist of
both reduced and oxidized CV chondrites, as defined by McSween (1977b).
Coolidge and Loongana 001 have been descibed as a new "grouplet" related
to CV chondrites by Kallemeyn and Rubin (1995), who argued that these
two meteorites had different volatile element abundances and could not
have been formed by closed-system metamorphism of the other CV
chondrites. Since the CV chondrites are highly heterogeneous, and small in
number, we think that such a conclusion may be premature. In most
respects, these meteorites have the properties expected of meteorites closely
resembling the CV chondrites prior to metamorphism. Nianqiang was
described as an anomalous CV chondrite by Kallemeyn and Wasson (1982)
and as an anomalous CK chondrite by Kallemeyn et al. (1991). The CV
and CK chondrites have very similar properties; the most distinctive to date
is that the CV chondrites have measurable TI, sensitivities, while the CK
chondrites do not. In this respect, Ninqiang is more closely related to the
CV chondrites, ttowever, we stress that these are subtle nuances in
classification, and the matter of whether it is better to stress similarities
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"FABLE I. Indt, ced TL data for CV chondrites, Renazzo and Ningqiang.

TL Peak

Sours_ TL sensitivities*] TL peak temperatures*
Meteorite /cat.'*+ Class + -130 °C _250 °C -350 °C -130 °C -250 °C -350 °C

AI,IIA 81003 MWG/21 CV(?) 0.020 4. 0.006 0.003 ± 0.001 - 132 ± 5 250 + 5 -

22 0.00494-0.0002 0.00104-0.0003 - 1234-2 2504-5 -

ALII 84028 MWG/77 CV(?) 0.024-0.01 0.014-0.01 1434-5 2354-20 3504-5

0.0164-0.004 0.0044-0.002 1304-4 2504-5 3504-5

ALH 85006 MWG/16 CV(?) 0.0924-0.009 0.144-0.02 1284-2 2314-13 3314-5

0.06 4- 0.02 0.044-0.03 1344-8 1964-16 3214-12

AIlende USNM CV(O) 0.012 4- 0.001 0.0013 4- 0.0001 127 4- 5 240 4- 8 350 ± 5

Arch b MPI CV(R) 0.003 4- 0.001 0.002 4- 0.0002 140 ± 4 250 4- 5 350 4- 5
0.015±0003 0.0134-0.002 1414-13 1904.8 3504-5

Axtell UC CV - 129 4- 9

Bali NMW CV(O) 0.114.0.06 0.154-0.11 130±4 239±10 329+9
0.154-0.07 0.29+0.11 1304-5 226±9 353+5

Coolidge CMS397.2x CV(R) 0.344-0.02 0.0794-0.001 1484-6 241±6 350+5

Efremovka USNM2348 CV(R) 0.051 4-0.003 0.0184.0.003 1274-2 2364-7 3404.5
0.032 4- 0.01 0.022 4- 0.007 146 + 5 250 ± 5 340 4- 5

Grosnaja NMW CV(O) 0.011 * 0.004 0.0164-0.01 132+8 2504-5 3414-6
0.0094-0.002 0.005±0.001 1344-9 2304- 14 3504-5

Leoville USNM3537 CV(R) 0.94 4- 0.26 0.89 4- 0.26 224 4- 7 290 4- 6
2.84-0.2 1.334-0.21 - 2324-14 400±5

l.oongana 001 MPI CV(R) - - 143 4- 1 - -
- - 1434-4 - -

Kaba BM33969a CV(O) 0.62 4- 0.19 1.00 ± 0.28 128 4- 2 246 4- 12 344 ± 8
0.84±0.11 1.15±0.13 147±5 230±8 324±8

Mokoia BM1910,72 CV(O) 0.018±0.001 0.0029±0.0001 1284- 1 2464-6 350±5
0.005±0.001 0.002±0.001 1294-3 2504-5 320±5

Ningqiang CAS CK-An 1.26±0.14 2.31±0.18 130+5 2274-9 342±8
0.09±0.03 0.16±0.06 130+7 236+ 12 336±9

Renazzo NMW CR 0.002 ± 0.001 0.0008 ± 0.0001 130 4- 5 250 + 5 350 ± 5
0.04±0.03 0.013+0.002 1294-5 221 +2 350±5

Vigarano USNM477 CV(R) 0.06 ± 0.01 0.042 + 0.014 137 4- 4 246 4. 5 338 ± 2
0.047±0.006 0.048+0.005 128+3 242+ 17 340±5

0.05 4- 0.03

0.034 4- 0.008

0.025 ± 0.004

0.034 4- 0.002

0.044 4- 0.005

0.015 ± 0.002

0.014 + 0.001

0.0028 + 0.0003 §

0.030 + 0.011

0.039 + 0.008

1.3 ± 0.05

0.034 + 0.003

0.034 + 0.002

0.015 + 0.001

0.010 ± 0.001

0.31 ± 0.04

0.52 ± 0.03 §

0.073 ± 0.015

0.22 ± 0.20

0.049 ± 0.005

0.01 ± 0.001

0.19± 0.06

0.02 ± 0.005

0.0049 ± 0.001

0015 + 0.002

0069 + 0.004

0.049 ± 0.002

* - = peak not present.

t Dhajala = 1.
_. MWG, Meteorite Working Group of the NASA/NSF/SI; USNM, United States National Museum, Smithsonian Institution
(Glenn MacPherson); MPI, Max-Planck-lnsitut Fur Chemie (Frank Wlotzka); NMW, Naturhistorisches Museum, Wien

(Gero Kurat); CMS, Center for Meteorite Studies (Carleton Moore); BM, Natural History Museum, London (Robert Hutchison);
CAS, Chinese Academy of Sciences (Ouyang Ziguan); UC, University of Chicago (Steve Simon).
+ (O) and (R) refer to the oxidized and reduced subgroups of McSween (1977b).
§ After acid washing to remove weathering products (Benoit et al., 1991).

]'ABLE 2. Samples details for five refractory inclusions from the
Allende CV chondrite.

Sample Description* Mass Reference
(mg)

Egg3 3.3 sinks 1.2 Meekeretal.(1983)

tland-picked melilite 2.4
Two chunks mantle 3.3

Egg 4 Interior grains 4.1 Meeker et al. (1983)

Int grains + matrix 2.5

Egg 6 3.3 sinks 2.1 Meekeretal. (1983),

3.0 floats 3 Meeker (1995a)

Papanastassiou et aL (1984)

Armstrong and

Wasserburg ( 1981 )

One chunk, mantle + int 28.9

Big AI Interior 15
Rim 5.7

Pink Angel Rim 2

* Density separates are indicated by the relevant density (in g cm -3)

and whether the separate "floats" or "sinks."

or differences in classifying these small classes of meteorites, is debatable.

For our present purposes, the matter is academic. Just as we have found
that the H6 and LL3.0 chondrites can be placed on the same plots for
comparing TL data with metamorphically-driven mineralogical and petro-

graphic properties, we are confident that placing these meteorites on the
same plots is not going to obscure real or create artificial trends. In fact, in

some cases the trends would be strengthened, but not altered, if the CO
chondrites were added to some of the present figures. Renazzo is a CR
chondrite that was included for comparison and for reasons that will

become apparent. We do not mean to imply that we consider it a CV or
CV-related chondrite. We also measured the induced TL of four CK

chondrites: ALH85002 (type 4), EET87507 (type 5), LEW86258 (type 4)
and Karoonda (type 4).

The CAIs and their separates in the present study were splits of samples

from the Meeker et aL (1983) study. Brief descriptions and references are
included in Table 2 and the Appendix.

Whole-rock TL Measurements

The thermoluminescence of duplicate splits were measured using the

methods of Sears et al. (1991a). The TL apparatus is equipped with
Coming filters 7-59 and 4-69, which restrict the measurement to blue

wavelengths. About 130-200 mg of each split was crushed, and the powder
homogenized prior to measurement.

Cathodoluminescence Petrography

Mosaics of the CL of 1 × 1 cm polished sections of Axtell and
Coolidge were obtained with a real magnification of 50× using a Nuclide
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Corporation (now MAAS) "Luminoscope?' We used a 14 _+ 1 keV, 7 -1
I-tA, a 1.0 × 0.7 cm electron beam, and recorded the images using Kodacolor
400 film, the C-40 development process, and exposures of 5 min for Axtell
and I min for Coolidge.

Heating Experiments

The methods ofGuimon et aL (1985a) were used to anneal 20-mg splits
of homogenized Allende powder obtained from fragment NMNH 3636
(Sears and Mills, 1974). The times, temperatures and the data obtained are
listed in Table 3.

Refractory Inclusions

The 11 samples of five refractory inclusions were crushed and their
induced TL measured in the normal way (Sears et al., 1991a). Inclusion
EGG-4 had to be cleaned of mounting resin by mechanical abrasion under a
microscope and washed in methylene chloride and acetone.

RESULTS

Glow Curve Shapes For Natural Samples

The glow curves (plots of light produced as a function of

temperature) for bulk CV chondritcs (Fig. 1) resemble those of the

CO chondrites (Keck and Sears, 1987). Most samples produce

curves with three peaks (Fig. 2), although there is considerable

variability in their relative intensities. Coolidge and Loongana 001

are exceptional in that they display one very intense peak. The

meteorites can be divided into a group consisting of Allende,

Vigarano, Efremovka, Mokoia and ALH84028, with a TL peak at

-130 °C and a weaker peak at 220 °C; a group consisting of Kaba,

Leoville, Bali, and ALlt85006 with approximately equal peaks at

240 and 350 °C; and Coolidge and Loongana 001 with a single

TABLE 3. Thermoluminescence data tbr samples of the Allende meteorite heated
at the temperatures and for the times indicated.*

Iteating -130 °C peak -250 °C peak -350 °C oeak
Temp TI, senst Peak T TI, sens t Peak T TL senst Peak T

Time (%') (°C) (°C)

500 °C

10h 1.75±0.33 122±4 - - - 346± 12
100h 2.18+0.48 122+6 - - 4.4+ 1.0 290 • 20

600 °C

10h 1.00 ± 0.08 132i6 - - 5.5±0.6 224±6
100h 1.48±0.20 122+6 - - 3.5+0.5 336+8

700 °C

lh 1.83+0.20 130±10 - - 3.0±0.9 328±6

2h 3.43±0.38 126+4 2.17±0.17 236i6 - -
10h 3.65 + 0.73 118+4 1.73±0.33 264+4 - -

20h 2.83+0.82 116+6 1.60±0.37 258il2 5.8±2.2 412±12
100h 3.9+2.5 122+2 9.33+ 1.87 256+6 - -

800 °C

10h 2.60+0.28 114±4 1.77+0.47 228+16 - -

100h 2.24-1.2 118+4 1.87+0.33 254+12 4.5±1.0 434+12

900 °C

Ih - - 1.12±0.67 186+6 2.0+5.2 450±10
2 h - - IO0 + 0.43 176 ± 8 - -

10h - - 0.93+0.43 215+12 2.2+1.1 374+28
20h - 0.70+0.10 194+8 - -

100h - 0.43±0.03 194+ 10 - -

1000 °C

10h - 1.60±0.20 174± 12 -
100 h - 1.00 + 0.03 170 + 2 -

* Uncertainties are standard deviations calculated from triplicate measurements.
-t Relative to unheated powder = 1.0
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FIG. 1. Representative glow curves (plots of TL produced as a function of
temperature of sample) for whole-rock CV chondrite samples. Allende,
Vigarano, Efremovka, Mokoia and ALH84028 have fairly similar curves
with a TL peak at -130 °C and a weaker peak at 220 °C; Kaba, l,eoville,
Bali and ALH85006 have curves with approximately equal peaks at 240 and
350 °C; and Coolidge and Loongana 001 have glow curves with a single
strong peak at -130 °C. The curves of Arch, Axtell and Grosnaja display
only a broad range of TL between 120 and 300 °C and most closely
resemble Allende. Renazzo generally resembled the glow curves of Arch

and occasionally those of Kaba.

strong peak at _130 °C. Arch, Axtell and Grosnaja, display

only a broad range of TI, between 120 and 300 °C and most

closely resemble the Allende group. Agreement between

duplicate splits is usually very good, with only the Arch

group showing serious heterogeneity where the minerals

responsible for the individual peaks in Arch group are

present in small but heterogeneous amounts. Renazzo

generally resembled Arch but occasionally produced curves

likc those of Kaba. The glow curves of Allcnde, Coolidgc

and Kaba groups approximately resemble those of the

Lance, Isna and ALHA77307 CO chondrites, respectively.

The Allende CAIs and their separates show a similar

range of glow curves to those of the CV chondrites (Fig. 3).

They all have TL peaks at _250 °C, and many have intense

peaks at 300-350 °C. The Pink Angel rim and a few other

samples have a strong peak at ~ 130 °C with little or no TL at

high temperatures.

Glow Curve Shapes For Heated Samples

Figure 4 compares the peak temperatures observed for

the Allende samples after heating. The _130 °C peak is

present in the samples heated at low temperatures, but after

900 °C for 2 h, it appears to have been replaced with a peak

at 200 °C. The _220 °C peak is absent or rare in the 500 and

600 °C samples but is present in samples heated at 700 or

800 °C. It also disappears at _900 °C. Peaks at 350 and 450

°C are occasionally present.

TL Sensitivity Variations

The 'I'L sensitivity data are summarized in Table 1 and

Fig. 5. The TL sensitivity at 120 °C for CV chondrites

covers a similar range to that of CO chondrites (a little over
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Plots comparing the peak temperatures for CV chondrites, the

Rcnazzo CR chondrite and the unusual CV chondrite, Ninqiang Peaks
thought to be due to low-feldspar (-130 °C), high-feldspar (-240 °C) and

melilite (-350 °C) arc present in most of the samples, although relative
intensities vary greatly.

two orders of magnitude) and slightly' less than the type 3 ordinary,

chondrites. The range shown by the higher temperature peaks is

also very large (nearly three orders of magnitude for the -220 °C

peak and about two orders of magnitude for the 350 °C peak) and

larger than observed for the other chondrite groups. We did not

attempt to measure the TI, sensitivities of CAIs or the CAI separates

because of the small sample number and size (Table 3). We found

that none of our CK chondrites exhibited detectable induced

thermoluminescence.

Luminescence Petrography

The CV chondrites have little or very, weak CI,. The matrix is

nonluminesccnt, and the CAIs in our Axtell section were generally

nonluminesccnt. The ('AIs in Coolidge produced bluc CI,, although

they, were few in number. Five of the 30 chondrules in our Axtell

Allende CAI
TL Glow Curves

EGG 4, Interior grains

EGG 3, melilite

EGG 3, 3.3 float

Big AI, rim

EGG 3, 30 float

Big AI, interior grains

EGG 6, 3,3 float

Pink Angel, rim

I

L L L 1

100 200 300 400 500

Glow Curve Temperature (°C)

FIG. 3. Glow curves lor five refractory inclusions from Allende and
separates from them. The valves 3.0 and 3.3 refer to the densities (gcm 3)
of the liquids used for separations. The temperature of the dominant TI.

peak moves to higher temperatures as the dominant mineral moves from
being low-feldspar to high-fcldspar to melilite.
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I:IG. 4. Plot comparing the peak temperatures for 18 samples of
homogenized Allende powder heated at the times and temperatures
indicated. Each data point is the mean of three aliquots. The peak at -130

°C disappears and merges with the 240 °C peak to produce an apparent
peak at _200 °C, as low-feldspar is converted tu high-feldspar. (Unlike

some samples of AIlende, especially CAIs, the samples used for our heating
experiments did not display the 240 °C peak prior to heating).

section have mesostasis with bright bluc CL, phenocrysts with red

CI, and rims of fine-grained material with red CL and are group A3

chondrules, while the remainder had non-luminescent mesostasis

and phenocrysts characteristic of group BI or B2 chondrules

(DeHart et aL, 1992). In contrast, most chondrules in Coolidge

were group A5 (mesostases with blue CI, and nonluminescent

phenocrysts), while a few appeared to be group B3 (mesostases with

weak blue CI,) (Deltart et al., 1992). The fine-grained rim material

in Axtell closely resembles the material that rims many' chondrules

in the Murchison CM chondrite {Sears el al., 1993), while Coolidge

chondrules did not have these fine-grained red CL rims.

DISCUSSION

We are primarily interested in the metamorphic history, of the

CV chondrites, but in order to clarify TL production by' this class

we will first examine the CAIs. These are well-characterized

mineral assemblages and separates and, together with the heating

and CI, results, help to establish the identity and nature of the major

TL phosphors in this class. We will then be in a position to discuss

implications of the bulk-sample TL data for metamorphism in the

CV chondrites and to assign petrographic types to these meteorites.

We will then return to CAIs in order to discuss possible

metamorphic effects in the inclusions, and we will discuss CK

chondrites.

Thermoluminescent Minerals in CV Chondrites

The glow curves in Fig. 3 and the petrographic descriptions of

the CAIs in the Appendix suggest mineralogical controls on the TL

of the CV class. The interior of EGG 4, the mantle and a dense

mineral separate of I';GG 3 and coarse-grained mclilile rim from
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Type 3 Ordinary CO CV Chondrites, Ningqiang,

Chondrites Chondrites and Renazzo

• lo-lt; ::_ _ ....
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139 _ 3.0 3,7 _ 3,0 3.83.8 3.3 _ 3.0

FIG. 5. Plot comparing TL sensitivities of type 3 ordinary, CO and CV chondrites. The ranges for
ordinary, CO and CV chondrites are fairly similar, but CV chondrites show a hiatus between
Ningqiang and Loongana 001.

Big AI have glow curves consisting of peaks at -400 and -250 °C,

often with the higher peak more intense, suggesting that this glow-

curve shape is characteristic of melilite. The -130 °C peak ob-

served in most bulk samples of CV chondrites is lacking in these

samples. In contrast, low-density plagioclase-rich fractions of EGG

3 and EGG 6 have peaks -130 and -250 °C, although their relative

intensity vanes, and there is no evidence for a high-temperature

peak. Interior samples of Big AI and rim samples of Pink Angel

exhibit glow curves similar to those of the low-density separates. In

fact, the glow curves of the low-density separates, as well as Big AI 1.0

interior grains and Pink Angel rim material, resemble those of

achondrites, in which we have shown by mineral separations that _"

the primary TL phosphor is plagioclase (Batchelor and Sears, 1991). __

We suspect that the peak observed at -250 °C is due to feldspar _"
t-

and that its presence in both low- and high-density separates

indicates incomplete separation of feldspar and melilite in the high- ._ 0.1

density separates. Feldspar is frequently enclosed in melilite in

these CAIs. Other common phases in these meteorites, including ,-

olivine and pyroxene, probably exhibit little or no luminescence

since they tend to be Fe-rich (Batchelor and Sears, 1991; McSween, ..aI--

1979). The only major exception is the red luminescent grains that

we expect to be forsterite in the rims of certain Axtell chondrules. 0.01

Metamorphic Series Among the CV Chondrites?

Most of the CV chondri'es, especially those of the AIlende and
J

Arch groups, have glow curves that resemble those of the feldspar- 0
dominated light fractions of CAIs. Members of the Kaba group,

however, exhibit glow curves similar to melilite-rich CAI samples.

Notably, although all the CAI samples in Fig. 3 came from Allende,

the characteristic 400 °C TL peak is very low in intensity in our

bulk-Allende samples. Apparently, melilite, while important in

many CAIs, is a relatively rare constituent in Allende. The repro-

ducibility of our Allende measurements argues against hetero-

geneity being the sole cause of variations in the meteorite-to-

meteorite TL properties. However, it suggests that there are real

variations in the ratio of feldspar to melilite as

one would expect if melilite was primary and

much of the feldspar was secondary. In this

case, the Allende, Arch and Kaba groups may

represent different metamorphic grades of CV
chondrite.

Figure 6 shows induced TL for CV

chondrites vs. the heterogeneity of the olivine

(the standard deviation of the FeO). The

samples can be divided into three groups,

those with heterogeneous olivine compositions

(o(Fa) = 20-200%) and TL sensitivities for

the -130 °C peak < -0.02, those with some-

what less heterogeneous olivine compositions

(cr(Fa) = 20-120%) and TL sensitivities for the

-130 °C peak of 0.02_.06 and the Coolidge

group with homogeneous olivine and TL

sensitivity near 1.0. This behavior is similar to

that observed for the type 3 ordinary and CO

chondrites and suggests that the TL sensitivity

increases as olivine compositions homogenize.

By contrast, the TL sensitivity of the 240 °C

and 350-400 °C peaks (not shown) display no

correlations with olivine heterogeneity. The

olivine data in Fig. 6 were taken from

McSween (1977b) and probably refer mainly to chondrule olivines.

Peck (1984) analyzed matrix olivine and also found varying degrees

of homogenization, which she interpreted in terms of homogeniza-

tion during metamorphism. She suggested the series Kaba <<

Mokoia < Vigarano / Grosnaja / Allende (see Scott et aL, 1988),

which is somewhat different to the series we propose here. Our CL
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FIG. 6. The TL sensitivity vs. standard deviation of the Fa in the olivine of
CV chondrites for the -130 °C glow-curve peak. (Olivine data from
McSween, 1977b). The proposed metamorphic trend is indicated by the
large arrow. The balloons are discussed in the text. McSween's (1977b)
oxidized and reduced subgroups are indicated by different symbols. Splits
from a single meteorite, where they differ outside uncertainty limits, are
connected by tie-lines. Upper limits on the TL data are indicated by points
with small arrows.
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observations indicate that the luminescence ofCV3 chondrites is not

concentrated in the CAIs but in chondrule mesostases, and unlike

CO and ordinary chondrites, CV3 chondrites show considerable

variability in modal chondrule abundance, 30 to 65% (McSween,

1977b; lluss et al., 1981; King and King, 1978, 1979; Grossman et

al., 1988). In Fig. 7, we therefore plot the TL sensitivity of the

-130 °C peak normalized to the modal abundance of Type 1

chondrules vs. the standard deviation of the Fa. The line is

marginally improved, but Arch, Axtell and Grosnaja still plot off the

line by amounts exceeding analytical uncertainties. We, therefore,

do not continue to normalize the TL sensitivity data.

The Iow-TL sensitivity of most of these samples and their

heterogeneity make these measurements difficult, but weathering

and shock could also complicate the picture. Grosnaja and Arch are

shock stage 3, but then so are many meteorites plotting close to the

trend line, which suggests that shock is not creating the scatter.

Weathering causes a decrease in TL sensitivity by up to an order of

magnitude, which can be removed, at least for Antarctic meteorites,

by acid-washing (Benoit et al., 1991). However, there is no evi-

dence that Arch, Axtell and Grosnaja are especially weathered, and

the TL sensitivity seems much too low for this to be a reasonable

explanation. Acid washing of Loongana 001 increased its TL

sensitivity by only a factor of two or less (Table I), suggesting that

the small difference between I,oongana 001 and Coolidge might be

due to weathering but not the low TL values of Arch, Axtell and

Grosnaja. With samples that are this heterogeneous, it is clearly

necessary to look at data for as many mineral systems as possible.

During metamorphism, the chondrules (like the refractory

inclusions) acquired Fe from the matrix (McSween, 1977b) so that

TL sensitivity of the -130 °C peak and the mean Fa content of the

olivines in reduced and oxidized CV chondrites display positive
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trends (Fig. 8). On the basis of Fe-Mg-Ca, AI plots, McSween

(1977b) ranked the reduced CV chondrites in order of increasing

metamorphism experienced as Efremovka, Leoville < Vigarano,

Arch < Coolidge, and for the oxidized CV chondrites the series was

Grosnaja, Bali, Kaba, Mokoia < Allende. These series are similar to

those expected on the basis of the data shown in Fig. 8 except that

we would place Efrcmovka with Vigarano and Arch with Leoville.

Metal and sulfide compositions are also sensitive indicators of

thermal history and are compared with TL sensitivity in Fig. 9. The

Ni content of the metal and sulfide of the oxidized subgroup of CV

chondrites increases with TL sensitivity, with Kaba and Bali having

the lowest Ni content; for the reduced subgroup, the Ni content of

the metal and sulfide is essentially independent of TI, sensitivity.

This suggests that metamorphism caused the oxidation of Fe in the

oxidized subgroup but had little effect on the Fe in the reduced

subgroup. Significantly, Renazzo plots at the origin of these two

trends, indicating that it might represent the starting material for

both series. Wood (1967) noted that heating Reuazzo in the

laboratory caused the Ni in the metal to increase and suggested that

Ni was migrating from the matrix to the metal grains.

In the ordinary chondrite groups, the concentration of volatiles

decreases with increasing TL sensitivity (Sears et al., 1991a). The

data for CV chondrites is not as clear cut (Fig. 10). We expect C to

behave as a volatile because of the thermodynamic stability and

volatility of CH 4 and CO, and the concentration of C decreases with

increasing TL sensitivity (Fig. 10b), with the meteorites with the

lowest TL sensitivity generally having fairly high C/Si ratios.

Vigarano, which our TL analysis suggests is relatively meta-

morphosed, has a fairly high C/Si ratio. The water data are

inconclusive or even contradictory (Fig. 10a) showing little trend as

a function of TL sensitivity. Although Coolidge may have a higher

water content due to terrestrial weathering, we observe that Kaba,
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Bali and Leoville all have low water contents. The apparently more

metamorphosed Allende, Vigarano and Grosnaja exhibit a wide

range of water contents. Data for the inert gases scatter widely with

only the slightest, if any, indication of a negative correlation (Fig.

II).

Petrographic Types for CV Chondrites

We suggest that variations in TL sensitivity and mineral

properties are consistent with oxidized and reduced CV chondrites

forming two metamorphic series. As for the ordinary and CO

chondrites, it seems that meaningful petrographic types can be

assigned to CV chondrites. This will help to distinguish between

nebular and parent-body processes and compare metamorphism on

different parent bodies. There is no a priori reason to suppose the

"calibration" between "I'L sensitivity and metamorphism is the same

for all chondrites classes, but in practice, these differences seem

relatively minor. The type definitions we propose for CV

chondrites are listed in Table 4. The TL sensitivity ranges are those

previously proposed for CO chondrites; other parameters arc

determined from trend lines drawn through the data in Figs. 6-8.

Table 5 shows the results obtained by assigning petrographic types
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FIG. 10. The TL sensitivity of the _130 °C peak vs. (a) C-Si ratio and (b)
H20 content for CV chondrites and Renazzo. With increasing TL scnsivity,
and therefore metamorphism, the C and H20 content of the samples
decreases. The balloons, arrows, tie-lines and symbols are as in Fig. 6
(Carbon and H20 data from Wiik, 1969, and Jarosewich, 1990).

on the basis ot" each parameter independently and our recom-

mended petrographic type for each meteorite. The scatter in Figs.

6-8 manifests itself as scatter in the assigned types, but when

presented this way outlying data can be recognized easily. With the

exception of Coolidge and I,oongana 001, which arc type 3.8, all

the samples are of low petrographic type (i.e., <3.3). Axtell, Leo-

ville and Arch (and possibly Kaba and Bali) are types 3.0-3.1, and

Allende, Grosnaja, Mokoia, Efremovka and Vigarano are types 3.2-
3.3.

Metamorphic History of CV Chondrites

Compared with Other Classes

The most notable aspect of the metamorphic history of the CV

chondritcs is how little metamorphism they have suffered compared

with the CO and ordinary chondrites. Only Coolidge and Loongana

001 are above type 3.3, while most ordinary chondrites and about

half of the CO chondrites are type >3.3. This could imply small

parent bodies or late accretion (Grimm and McSween, 1993), or it

might be a sampling artifact. In this connection, the relationship

between oxidized CV chondrites and the CK chondritcs is especially

interesting.

Despite the problem of representative sampling of small classes,

it seems clear that there are major differences in time-temperature

history during metamorphism of the various classes (Fig. 12).

Although there are several CO chondritcs that, like Coolidge and

Loongana 001, are of type >3.5, the feldspar in these samples is

apparently in the low form. Thus, they have a predominant _130 °C

peak in their glow curves. In contrast, ordinary chondrites of type
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>3.5 contain prcdominently high-feldspar. This means that either

(I) feldspar production in CO, CV and CV-related chondrites of

types 3.5 3.9 took place over a longer time span than in ordinary

chondrites but at lower maximum temperatures, or (2) the CO, CV

'FABLE 4. Petrographic type definitions for CV chondrites.*

Type TL sens Mean Fa a Fa Ni in C 1120
(Dhajala= 1) (mol%) (%) sulfide t (wt%) (wt%)

(wt%)

3.0 <0.017 <8.0 >110 <17 >1.05 >3.5

3.1 0.017-0.030 80-10.0 90-110 17-20 0.75-1.05 2.5-3.5

3.2 0.030-0.054 10.0 I1.0 70-90 20-22 0.60-0.75 2.5 3.5

3.3 0.054-0.10 11o-12.0 5_70 22-23 0.45-0.60 2.0-15

3.4 0.10-0.17 12.0-12.5 40-50 23-24 0.40-0.45 1.5-2.0

3.5 0.17 0.30 12.5-13.0 30_10 24-25 0.30-0.40 1.3-1.5

3.6 0.30-0.54 13.0-13.5 20-30 25-26 0.20-0.30 0.8-1.3

3.7 0.54-1.00 13.5 14.0 5-20 26 28 0.15-0.20 0.5-0.8

3.8 1.0-1.7 14.0 14.5 <5 >28 <0.15 <0.5

3.9 >1.7 >14.5 <5 >28 <0.15 <0.5

* Fa and Fs data from McSween (1977b); sulfide compositions

from Wood (1967) and McSween (1977b); C and t120 data from
W iik (1969) and Jarosewich (1990).
t Parameter applicable to oxidized subgroup ofCV chondrites only.

TABLE 5. Assignment of petrographic types to CV chondrites.

TL Mean Fa N i in C 1120 'lypet
sens Fa sulf*

ALltA 81003 3.0/3.5 - - 3.0

ALIt 84018 3.2 - - - 3.2

Allende 3.2 3.2 3.1 3.2 3.6 3.6 3.2

Arch 3.0 3.0 3.5 n.a. - 3.0

Axtell 3.0 3.0 3.3 - - - 3.0

Bali <3.2 3.0 3.0 3. I 3.3 3.6 3.0

Coolidge 3.8 3.8 3.8 n.a. _>3.8 _>3.8 3.8

Efremovka 3.2 3.0 3.2 n.a. 3.1 3.6 3.2

Grosnaja 3.3 3.3 3.3 3.1 3.2 3.0 3.3

Kaba <3.3 3.0 3.0 3.3 3.0 36 3.0

Leoville 3.0 3.0 3.0 n.a. 3.0 3.6 3.0

Loongana 001 >3.3 3.8 3.8 ha. 3.8

Mokoia 3.2 3.3 3.0 3.3 3.1 3.2 3.2

Vigarano 3.3 30 3.3 n.a. 3.0 3.2 3.3

* n.a.= not applicable. This parameter is only applicable 1o tile
oxidized subgroup ofCV chondrites;
- = data not available.

t Recommended petrographic type.

and CV-related chondrites were metamorphosed at roughly the same

maximum temperature as the ordinary chondrites but cooled

through the high-low feldspar transition much more slowly than

ordinary chondrites, allowing most of their feldspar to transtbrm to

the low state (Keck and Sears, 1987; Scars et al., 1991b). The

equilibration temperatures for Allende calculated by Weinbruch et

al. (1993) are well below the high-low transformation temperature

for feldspar, which is probably _600 °C (Smith, 1972) but certainly

<800 °C, the temperature at which the TL peak moves to higher

temperatures after heating lbr 100h (Guimon et aL, 1985a).

The Low TL Sensitivity ofCK Chondrites

The most perplexing property of the CK chondritcs is that

despite their high petrographic grade, they produce no detectable

induced TL. Other type 4,5 chondritcs typically have "l'I. scnsivities

105-106x the detection limit. In fact, in view of the similarity of the

E

I---

melted

disordered

ordered > 3.5

OC, CV & CO <3.5

Time "_

FIG. 12. Schematic temperature-time metamorphic histories tbr ordinary,
CO and CV chondrites based on TL and other studies. The CV and CO

chondrites of petrographic type _<3.5 did not experience ,sufficient peak
metamorphic temperatures to produce disordered feldspar, while ordinary,
CV and CO chondrites of petrographic types >3.5 wcrc metamorphosed to a

higher degree but still below the order-disorder transformation temperature
for feldspar. Ordinary chondrites of petrographic types >3.5 were heated to

temperatures or tbr times that varied with petrographic type but above the
order-disorder temperature. Ordinary chondrites are referred lo as "OC" in
the figure.
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two classes (McSween, 1977b; Kallemeyn et al., 1991), it might be

suggested that the CK chondrites are simply highly metamorphosed

equivalents of the CV chondrites. However, the TL data alone

indicate that this is clearly not so.

The most straight-forward explanation for a meteorite to show

little or no induced TL is the absence of crystalline feldspar.

However, not only is this unlikely in view of their bulk composi-

tions and metamorphic history, crystalline feldspar is petro-

graphically observed (Geiger and Bischoff, 1991; Rubin, 1992;

Keller, 1993). One of the characteristics of CK chondrites is their

low chondrule content, 10 to 15 vol%, but this would decrease the

TL sensitivity by only a factor of 2-3 and not by the 2-3 orders of

magnitude below those of chondrites of comparable petrographic

types. Shock-heating can lower TL sensitivities of terrestrial

feldspars and meteorites by I-2 orders of magnitude through the

destruction of crystalline feldspar and shock-darkening of the

sample (Hartmetz et al., 1986; Haq et al., 1988). Unusual shock

and thermal histories for CK chondrites have been proposed by

Kallemeyn et aL (1991) and Rubin (1992), although this interpreta-

tion appears unlikely (Keller, 1993). The CK chondrites show only

modest petrographic indications of shock (shock stages SI-$3;

Scott et al., 1992), and there is certainly no indication that CK

chondrites are more heavily shocked than CV chondrites. Nor is

there any relationship between TL sensitivity and shock (Fig. 13).

A possible alternate explanation for lack of measurable induced

TL in these meteorites is that the plagioclase contains Fe, which is

quenching the TL production. We have argued that the relatively

low TL sensitivity of lunar mare basalts and unequilibrated eucrites

was due to Fe-quenching, (Batchelor and Sears, 1991). However,

the TL sensitivity of CK chondrites seems even too low for Fe-
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quenching, and mild levels of metamorphism should cause the Fe to

diffuse out of the plagioclase. In short, we are unable to

satisfactorily explain the lack of measureable TL of CK chondrites,

but it surely indicates major differences in the feldspar of this and

almost every other chondrite and achondrite class.

Metamorphic Series among the Allende Refractory Inclusions?

Meeker et al. (1983) suggested that five refractory inclusions in

Allende, including Egg-3, Egg-4, and Egg-6 in the present study,

constituted a metamorphic series. It was suggested that Egg-4 had

experienced metamorphism throughout and that Egg-3 and Egg-6

contain altered mantles and pristine cores. Embayed pyroxene, the

optical continuity of separated pyroxenes, lobate sutured grain

boundaries and 120 ° triple junctions were thought to be evidence

that pyroxene was converted to melilite by an in situ reaction with a

Ca source during metamorphism on the parent body. Meeker et aL

(1983) were unclear as to the source of the Ca, suggesting CaCO 3 or

calcic pyroxenes as possibilities. Calcic feldspar might be another.

Possible parent-body metamorphic effects on dark clasts in Allende

have also been reported by Kojima and Tomeoka (1994). The

Meeker et al. suggestion is not widely accepted, and the features

they described are usually ascribed to preaccretionary igneous

events (see MacPherson et al., 1988; Meeker, 1995a).

We agree with Meeker et al. (1983) that their proposal carries

the implication that metamorphism must have occurred prior to

emplacement in the meteorite. Not only is the degree of alteration

from one inclusion to another more than one would expect for in

situ metamorphism, but petrographic type and the TI, sensitivity at

high glow-curve temperatures would show a positive correlation, as

feldspar is converted to melilite. This is not observed. In addition,

the 200 °C glow-curve peak displayed by the CAIs is more intense

than the -130 °C peak (Fig. Ib), suggesting that the CAIs in feld-

spar is predominantly in the high form. The CAis apparently cooled

rapidly from temperatures >800 °C and the meteorite-wide

metamorphism was clearly not sufficiently intense to cause the

feldspar to revert to the low form. Our data do not permit us to

chose between the metamorphic and igneous theories for the pro-

duction of these trends. They are consistent with both.

The fairly intense -130 °C TL peak, relative to the 200 °C peak

(Fig. l b), shown by the Pink Angel rim is noteworthy and suggests

a history quite unlike that of most CAIs. Almost certainly this

history involved low temperatures and/or a slow cooling history

(MacPherson et al., 1981 ; Brigham et al., 1986; see MacPherson et

al., 1988), consistent with the presence of low-feldspar and relative

paucity of high-feldspar. The hydrothermal heating experiments of

Guimon et al. (1985b) make it seem unlikely that secondary

alteration is responsible for the production of this feldspar since

aqueous alteration preferentially destroys low-feldspar and does not

result in its formation. It is also unlikely that chondrule mesostasis,

which drives the TL trends of our bulk samples, is responsible for

the production of the _130 °C peak in this CAl. Another possibility

is that the Pink Angel inclusion, the only fine-grained CAI in our

study (Armstrong and Wasserburg, 1981), either did not experience

the high temperatures necessary to produce high feldspar in the first

place or, if it did, cooled sufficiently slowly to enable complete

conversion to the low form. The small grain size and the presence

of alkali- and halogen-rich phases suggest formation at much lower

temperatures than typical coarse-grained CAIs or perhaps, as

suggested by Chen and Wasserburg (1981), as part of a multistage

evolution quite different from that of coarse-grained CAIs.
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SUMMARY AND CONCLUSIONS

We have explored the metamorphic history of CV chondrites

using their induced thermoluminescence properties. The greater

heterogeneity and generally low levels of metamorphism involved

made the study more difficult than previous studies of unequili-

brated ordinary chondrites or even the CO chondrites, but we can

observe trends in TI, sensitivity and mineral composition that

appear to reflect parent-body metamorphism. We propose petro-

logic types ranging from type 3.0 (e.g., Axtell) to type Y8

(Coolidge and I,oongana 001). Studies of the cathodoluminescence

properties of Axtell and Coolidge are consistent with our interpre-

tations. We also have studied the TI, properties of a suite of

individual CAls, which display TI, trends consistent with kno;vn

mineralogical variations and with melilitc displaying strong high-

temperature TL (-400 °C) and high-feldspar contributing TI, at

-230 °C. These data are consistent with either an igneous origin or

with metamorphism prior to emplacement in the meteorite, but lhey

dearly are not consistent with in situ metamorphism, '['he CK

chondrites have no detectable induced TI,, which make them unique

among metamnrphosed chondritcs and is a further indication of their

unusual feldspar. On the basis of its TI, properties, we argue that

Ningqiang is more closely related to CV than to CK chondritcs.

The CV chondrites are unlike CO chondrites and ordinary,

chondrites in their generally low degree of metamorphism. Among

the samples analyzed in this study, only Coolidge and Loongana

001 exhibit a petrologic type >3.3 and a relatively large number of

CV chondrites (Axtcll. Bali, Kaba and Leoville) arc virtually

tmmetamorphosed (type Y(I). Thus, like the low petrologic types of

other chondrite classes, the CV chondrites provide opportunities for

studying prcmetamorphic processes in the Solar System without the

postaccretionary aqueous alteration that characterizes other classes

of carbonaceous chondrites. Like the CO chondrites, the CV

chondrfles, including the two type 3.8 chondrites, have [I, proper-

ties indicative of hnv-temperature metamorphism. There are, thus,

important differences in the thermal history of the various chondrite

classes, even for individtml meteorites with the same petrographic

type.
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APPENDIX

Descriptions of the Refractory Inclusions in This Study

Big AI is a 1.2 × 1.8 cm type BI inclusion (Grossman, 1975) with a
coarse-grained melilite mantle (Papanastassiou et al., 1984, 1987). We
were provided with samples of both the mantle and the interior of this
inclusion.

EGG 3 is a large type B inclusion (Grossman, 1975) of Ti-rich fassaite,
anorthite, spinel and melilite with minor opaques and perovskite (Wark and

Wasserburg, 1980; Wark and Lovering, 1980, 1982; Meeker et al., 1983).
The melilite is in a 0.1-2 mm mantle and is essentially absent from the
interior. Spinel becomes small and anhedral or disappearing towards the

rim. We obtained samples of pure melilite and two density separates, <3.0
gm/cm 3 and 3.0-3.3 gm/cm 3. We presume these mineral separates consist

primarily of plagioclase, and plagioclase and melilite, respectively.
EGG 4 is a cm-sized type A inclusion (Grossman, 1975) of 0.5-2 mm

melilite grains enclosing small (<100 p.m) grains of spinel, Ti-rich fassaite,
perovskite and minor opaques (Meeker et aL, 1983; Teshima and Wasser-
burg, 1985). "Kink band-like features," lobate sutured grain boundaries and

120 ° triple points displayed by the melilite were interpreted by Meeker et

al. (1983) as evidence for intensive metamorphism. The present sample

consisted of interior grains.
EGG 6 is a 2 cm diameter inclusion that consists of a core of pyroxene,

plagioclase and spinel surrounded by mantle of melilite. It also contains
"spinel-free islands" that have caused considerable discussion (Meeker,

1995b). As in EGG 3, the spinels become small, anhedral or disappear
towards the rim of the inclusion. Unlike EGG 3, this inclusion contains
assemblages of V-Fe-Ni-S phases in a single 250-I.tm inclusion (Meeker et

al., 1983; Teshima and Wasserburg, 1985). Our sample from EGG 6
consisted of a 3.3 gm/cm 3 float, consisting primarily of plagioclase.

Pink Angel is a 2-cm diameter inclusion that is representative of a class

of fine-grained Allende inclusions rich in Mg and AI (referred to as MASHi
inclusions) and contain phases rich in Na and halogens (Armstrong and

Wasserburg, 1981; Villa et aL, 1981). The interior of this inclusions
consists of a porous aggregate of spinel cemented by dense patches of

sodalite and associated grossular. The rim of this inclusion is a compact
assemblage of spinel and fine-grained anorthite and diopside. We wcre
supplied with samples of the rim of this inclusion.


