2,360 research outputs found

    DNA-Based Patterning of Tethered Membrane Patches

    Get PDF

    Stability of Glutamate-Aspartate Cardioplegia Additive Solution in Polyolefin IV Bags

    Get PDF
    Objective: Glutamate-aspartate cardioplegia additive solution (GACAS) is used to enhance myocardial preservation and left ventricular function during some cardiac surgeries. This study was designed to evaluate the stability of compounded GACAS stored in sterile polyolefin intravenous (IV) bags. The goal is to extend the default USP beyond-use date (BUD) and reduce unnecessary inventory waste. Methods: GACAS was compounded and packaged in sterile polyolefin 250 mL IV bags. The concentration was 232 mM for each amino acid. The samples were stored under refrigeration (2°C-8°C) and analyzed at 0, 1, and 2 months. At each time point, the samples were evaluated by pH measurement and visual inspection for color, clarity, and particulates. The samples were also analyzed by high-performance liquid chromatography (HPLC) for potency and degradation products. Due to the lack of ultraviolet (UV) chromophores of glutamate and aspartate, the samples were derivatized by ortho-phthalaldehyde prior to HPLC analysis. Results: The time zero samples of GACAS passed the physical, chemical, and microbiological tests. Over 2 months of storage, there was no significant change in pH or visual appearance for any of the stability samples. The HPLC results also indicated that the samples retained 101% to 103% of the label claim strengths for both amino acids. Conclusion: The physical and chemical stability of extemporaneously prepared GACAS has been confirmed for up to 2 months in polyolefin IV bags stored under refrigeration. With proper sterile compounding practice and microbiology testing, the BUD of this product can be extended to 2 months

    Second-order schedules: Manipulation of brief-stimulus duration at component completion

    Get PDF
    In a second-order schedule, fixed-interval components were reinforced according to a variable-interval schedule. A brief stimulus accompanied the completion of each fixed interval. Brief-stimulus duration was varied across conditions from 0.5 to 8 sec. Patterning was greater the longer the duration of the stimulus. Additionally, exposure to relatively long brief-stimulus durations enhanced patterning upon reexposure to shorter brief-stimulus durations

    Voigt transmission windows in optically thick atomic vapours: a method to create single-peaked line centre filters

    Get PDF
    Cascading light through two thermal vapour cells has been shown to improve the performance of atomic filters that aim to maximise peak transmission over a minimised bandpass window. In this paper, we explore the atomic physics responsible for the operation of the second cell, which is situated in a transverse (Voigt) magnetic field and opens a narrow transmission window in an optically thick atomic vapour. By assuming transitions with Gaussian line shapes and magnetic fields sufficiently large to access the hyperfine Paschen–Back regime, the window is modelled by resolving the two transitions closest to line centre. We discuss the validity of this model and perform an experiment which demonstrates the evolution of a naturally abundant Rb transmission window as a function of magnetic field. The model results in a significant reduction in two-cell parameter space, which we use to find theoretical optimised cascaded line centre filters for Na, K, Rb and Cs across both D lines. With the exception of Cs, these all have a better figure of merit than comparable single cell filters in literature. Most noteworthy is a Rb-D2 filter which outputs >92% of light through a single peak at line centre, with maximum transmission 0.71 and a width of 330 MHz at half maximum

    Verification and Validation of the General Mission Analysis Tool (GMAT)

    Get PDF
    This paper describes the processes and results of Verification and Validation (V&V) efforts for the General Mission Analysis Tool (GMAT). We describe the test program and environments, the tools used for independent test data, and comparison results. The V&V effort produced approximately 13,000 test scripts that are run as part of the nightly buildtest process. In addition, we created approximately 3000 automated GUI tests that are run every two weeks. Presenting all test results are beyond the scope of a single paper. Here we present high-level test results in most areas, and detailed test results for key areas. The final product of the V&V effort presented in this paper was GMAT version R2013a, the first Gold release of the software with completely updated documentation and greatly improved quality. Release R2013a was the staging release for flight qualification performed at Goddard Space Flight Center (GSFC) ultimately resulting in GMAT version R2013b

    Site percolation and random walks on d-dimensional Kagome lattices

    Full text link
    The site percolation problem is studied on d-dimensional generalisations of the Kagome' lattice. These lattices are isotropic and have the same coordination number q as the hyper-cubic lattices in d dimensions, namely q=2d. The site percolation thresholds are calculated numerically for d= 3, 4, 5, and 6. The scaling of these thresholds as a function of dimension d, or alternatively q, is different than for hypercubic lattices: p_c ~ 2/q instead of p_c ~ 1/(q-1). The latter is the Bethe approximation, which is usually assumed to hold for all lattices in high dimensions. A series expansion is calculated, in order to understand the different behaviour of the Kagome' lattice. The return probability of a random walker on these lattices is also shown to scale as 2/q. For bond percolation on d-dimensional diamond lattices these results imply p_c ~ 1/(q-1).Comment: 11 pages, LaTeX, 8 figures (EPS format), submitted to J. Phys.

    Determination of a complex crystal structure in the absence of single crystals : analysis of powder X-ray diffraction data, guided by solid-state NMR and periodic DFT calculations, reveals a new 2′-deoxyguanosine structural motif

    Get PDF
    Derivatives of guanine exhibit diverse supramolecular chemistry, with a variety of distinct hydrogen-bonding motifs reported in the solid state, including ribbons and quartets, which resemble the G-quadruplex found in nucleic acids with sequences rich in guanine. Reflecting this diversity, the solid-state structural properties of 3′,5′-bis-O-decanoyl-2′-deoxyguanosine, reported in this paper, reveal a hydrogen-bonded guanine ribbon motif that has not been observed previously for 2′-deoxyguanosine derivatives. In this case, structure determination was carried out directly from powder XRD data, representing one of the most challenging organic molecular structures (a 90-atom molecule) that has been solved to date by this technique. While specific challenges were encountered in the structure determination process, a successful outcome was achieved by augmenting the powder XRD analysis with information derived from solid-state NMR data and with dispersion-corrected periodic DFT calculations for structure optimization. The synergy of experimental and computational methodologies demonstrated in the present work is likely to be an essential feature of strategies to further expand the application of powder XRD as a technique for structure determination of organic molecular materials of even greater complexity in the future

    High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation

    Get PDF
    Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a highresolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence
    • …
    corecore