2,566 research outputs found

    The "Transport Specificity Ratio": a structure-function tool to search the protein fold for loci that control transition state stability in membrane transport catalysis

    Get PDF
    BACKGROUND: In establishing structure-function relationships for membrane transport proteins, the interpretation of phenotypic changes can be problematic, owing to uncertainties in protein expression levels, sub-cellular localization, and protein-folding fidelity. A dual-label competitive transport assay called "Transport Specificity Ratio" (TSR) analysis has been developed that is simple to perform, and circumvents the "expression problem," providing a reliable TSR phenotype (a constant) for comparison to other transporters. RESULTS: Using the Escherichia coli GABA (4-aminobutyrate) permease (GabP) as a model carrier, it is demonstrated that the TSR phenotype is largely independent of assay conditions, exhibiting: (i) indifference to the particular substrate concentrations used, (ii) indifference to extreme changes (40-fold) in transporter expression level, and within broad limits (iii) indifference to assay duration. The theoretical underpinnings of TSR analysis predict all of the above observations, supporting that TSR has (i) applicability in the analysis of membrane transport, and (ii) particular utility in the face of incomplete information on protein expression levels and initial reaction rate intervals (e.g., in high-throughput screening situations). The TSR was used to identify gab permease (GabP) variants that exhibit relative changes in catalytic specificity (k(cat)/K(m)) for [(14)C]GABA (4-aminobutyrate) versus [(3)H]NA (nipecotic acid). CONCLUSIONS: The TSR phenotype is an easily measured constant that reflects innate molecular properties of the transition state, and provides a reliable index of the difference in catalytic specificity that a carrier exhibits toward a particular pair of substrates. A change in the TSR phenotype, called a Ξ”(TSR), represents a specificity shift attributable to underlying changes in the intrinsic substrate binding energy (Ξ”G(b)) that translocation catalysts rely upon to decrease activation energy ([Image: see text]). TSR analysis is therefore a structure-function tool that enables parsimonious scanning for positions in the protein fold that couple to the transition state, creating stability and thereby serving as functional determinants of catalytic power (efficiency, or specificity)

    Interaction of C-60 molecules on Si(100)

    Get PDF
    The interactions between pairs of C60 molecules adsorbed upon the Si(1 0 0) surface have been studied via a series of DFT calculations. Configurations which have the fullerene cage located within the dimer trench bonded to four dimers (t4) have been investigated, as these have previously been found to be among the most stable for the C60 molecule. These t4 configurations are explored with all possible pairs of fullerene configuration combinations considered. We have looked at two distinct groups of separation distances between the two C60 molecules. These have the fullerene bonding sites as either adjacent to one another or separated by one Si surface dimer. Comparisons between the two groups confirm the trend of the combinations becoming more favourable at a greater fullerene separation. In the systems with adjacent bonding sites the combined pair of fullerenes were in general less favourable than the two isolated cases. At the longer fullerene separation distance this trend was reversed. The longer fullerene separation distance reflects the experimental separation observed by Moriarty et al. [P. Moriarty, Y.R. Ma, M.D. Upward, P.H. Beton, Surf. Sci. 407 (1998) 27]

    Brain-computer interface controlled functional electrical stimulation device for foot drop due to stroke.

    Get PDF
    Gait impairment due to foot drop is a common outcome of stroke, and current physiotherapy provides only limited restoration of gait function. Gait function can also be aided by orthoses, but these devices may be cumbersome and their benefits disappear upon removal. Hence, new neuro-rehabilitative therapies are being sought to generate permanent improvements in motor function beyond those of conventional physiotherapies through positive neural plasticity processes. Here, the authors describe an electroencephalogram (EEG) based brain-computer interface (BCI) controlled functional electrical stimulation (FES) system that enabled a stroke subject with foot drop to re-establish foot dorsiflexion. To this end, a prediction model was generated from EEG data collected as the subject alternated between periods of idling and attempted foot dorsiflexion. This prediction model was then used to classify online EEG data into either "idling" or "dorsiflexion" states, and this information was subsequently used to control an FES device to elicit effective foot dorsiflexion. The performance of the system was assessed in online sessions, where the subject was prompted by a computer to alternate between periods of idling and dorsiflexion. The subject demonstrated purposeful operation of the BCI-FES system, with an average cross-correlation between instructional cues and BCI-FES response of 0.60 over 3 sessions. In addition, analysis of the prediction model indicated that non-classical brain areas were activated in the process, suggesting post-stroke cortical re-organization. In the future, these systems may be explored as a potential therapeutic tool that can help promote positive plasticity and neural repair in chronic stroke patients

    Changes in CVD risk factors in the activity counseling trial

    Get PDF
    Primary care facilities may be a natural setting for delivering interventions that focus on behaviors that improve cardiovascular disease (CVD) risk factors. The purpose of this study was to examine the 24-month effects of the Activity Counseling Trial (ACT) on CVD risk factors, to examine whether changes in CVD risk factors differed according to baseline risk factor status, and to examine whether changes in fitness were associated with changes in CVD risk factors. ACT was a 24-month multicenter randomized controlled trial to increase physical activity. Participants were 874 inactive men and women aged 35–74 years. Participants were randomly assigned to one of three arms that varied by level of counseling, intensity, and resource requirements. Because there were no significant differences in change over time between arms on any of the CVD risk factors examined, all arms were combined, and the effects of time, independent of arm, were examined separately for men and women. Time Γ— Baseline risk factor status interactions examined whether changes in CVD risk factors differed according to baseline risk factor status. Significant improvements in total cholesterol, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol, the ratio of total cholesterol to HDL-C, and triglycerides were seen in both men and women who had high (or low for HDL-C) baseline levels of risk factors, whereas significant improvements in diastolic blood pressure were seen only in those men with high baseline levels. There were no improvements in any risk factors among participants with normal baseline levels. Changes in fitness were associated with changes in a number of CVD risk factors. However, most relationships disappeared after controlling for changes in body weight. Improvements in lipids from the ACT interventions could reduce the risk of coronary heart disease in people with already high levels of lipids by 16%–26% in men and 11%–16% in women. Interventions that can be implemented in health care settings nationwide and result in meaningful population-wide changes in CVD risk factors are needed. The ACT physical activity interventions produced substantial improvements among men and women with elevated CVD risk factors
    • …
    corecore