181 research outputs found

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on three research projects.Maryland Procurement Office Contract MDA 904-93-C4169Maryland Procurement Office Contract MDA 903-94-C6071U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604MIT Lincoln Laboratory Advanced Concepts Program Contract CX-16335U.S. Army Research Office Grant DAAH04-93-G-0399U.S. Army Research Office Grant DAAH04-93-G-018

    Optical Propagation and Communication

    Get PDF
    Contains an introduction and reports on three research projects.Maryland Procurement Office Contract MDA 904-93-C4169Maryland Procurement Office Contract MDA 903-94-C6071U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0604MIT Lincoln Laboratory Advanced Concepts Program Contract CX-16335U.S. Army Research Office Grant DAAH04-93-G-0399U.S. Army Research Office Grant DAAH04-93-G-018

    String-like Clusters and Cooperative Motion in a Model Glass-Forming Liquid

    Full text link
    A large-scale molecular dynamics simulation is performed on a glass-forming Lennard-Jones mixture to determine the nature of dynamical heterogeneities which arise in this model fragile liquid. We observe that the most mobile particles exhibit a cooperative motion in the form of string-like paths (``strings'') whose mean length and radius of gyration increase as the liquid is cooled. The length distribution of the strings is found to be similar to that expected for the equilibrium polymerization of linear polymer chains.Comment: 6 pages of RevTex, 6 postscript figures, uses epsf.st

    Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na+,K+-ATPase α3 missense mutant mice

    Get PDF
    Missense mutations in ATP1A3 encoding Na(+),K(+)-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+),K(+)-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na(+),K(+)-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na(+),K(+)-ATPase α3, including upon the K(+) pore and predicted K(+) binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na(+),K(+)-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC

    Hox10 Genes Function in Kidney Development in the Differentiation and Integration of the Cortical Stroma

    Get PDF
    Organogenesis requires the differentiation and integration of distinct populations of cells to form a functional organ. In the kidney, reciprocal interactions between the ureter and the nephrogenic mesenchyme are required for organ formation. Additionally, the differentiation and integration of stromal cells are also necessary for the proper development of this organ. Much remains to be understood regarding the origin of cortical stromal cells and the pathways involved in their formation and function. By generating triple mutants in the Hox10 paralogous group genes, we demonstrate that Hox10 genes play a critical role in the developing kidney. Careful examination of control kidneys show that Foxd1-expressing stromal precursor cells are first observed in a cap-like pattern anterior to the metanephric mesenchyme and these cells subsequently integrate posteriorly into the kidney periphery as development proceeds. While the initial cap-like pattern of Foxd1-expressing cortical stromal cells is unaffected in Hox10 mutants, these cells fail to become properly integrated into the kidney, and do not differentiate to form the kidney capsule. Consistent with loss of cortical stromal cell function, Hox10 mutant kidneys display reduced and aberrant ureter branching, decreased nephrogenesis. These data therefore provide critical novel insights into the cellular and genetic mechanisms governing cortical cell development during kidney organogenesis. These results, combined with previous evidence demonstrating that Hox11 genes are necessary for patterning the metanephric mesenchyme, support a model whereby distinct populations in the nephrogenic cord are regulated by unique Hox codes, and that differential Hox function along the AP axis of the nephrogenic cord is critical for the differentiation and integration of these cell types during kidney organogenesis

    Moving towards an enhanced community palliative support service (EnComPaSS): protocol for a mixed method study

    Get PDF
    BACKGROUND: The challenge of an ageing population and consequential increase of long term conditions means that the number of people requiring palliative care services is set to increase. One UK hospice is introducing new information and communication technologies to support the redesign of their community services; improve experiences of existing patients; and allow efficient and effective provision of their service to more people. Community Palliative Care Nurses employed by the hospice will be equipped with a mobile platform to improve communication, enable accurate and efficient collection of clinical data at the bedside, and provide access to clinical records at the point of care through an online digital nursing dashboard. It is believed that this will ensure safer clinical interventions, enable delegated specialist care deployment, support the clinical audit of patient care and improve patient safety and patient/carer experience. Despite current attempts to evaluate the implementation of such technology into end of life care pathways, there is still limited evidence supporting the notion that this can be sustained within services and implemented to scale. This study presents an opportunity to carry out a longitudinal evaluation of the implementation of innovative technology to provide evidence for designing more efficient and effective community palliative care services. METHODS: A mixed methods approach will be used to understand a wide range of organisational, economic, and patient-level factors. The first stage of the project will involve the development of an organisational model incorporating proposed changes resulting from the introduction of new novel mobile technologies. This model will guide stage two, which will consist of gathering and analysing primary evidence. Data will be collected using interviews, focus groups, observation, routinely collected data and documents. DISCUSSION: The implementation of this new approach to community-based palliative care delivery will require significant changes to established working patterns. This new service delivery model is being developed by the Hospice in collaboration with a team of international academic, industry, and clinical commissioning service improvement specialists. The findings from this initial evaluation will provide valuable baseline evidence regarding the delivery of palliative and end-of-life care services

    Exemplar by feature applicability matrices and other Dutch normative data for semantic concepts

    Full text link

    Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study.</p> <p>Methods/Design</p> <p>STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session.</p> <p>Clinical Trials Registry</p> <p>ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01141608">NCT01141608</a></p> <p><url>http://clinicaltrials.gov/ct2/show/NCT01141608?term=Stimulant+Reduction+Intervention+using+Dosed+Exercise&rank=1</url></p
    corecore