657 research outputs found

    The Need for Large-Scale, Longitudinal Empirical Studies in Middle Level Education Research

    Get PDF
    This essay describes and discusses the ongoing need for large-scale, longitudinal, empirical research studies focused on middle grades education. After a statement of the problem and concerns, the essay describes several prior middle grades efforts and research studies. Recommendations for future research efforts to inform policy decisions are provided, including roles for the Middle Level Education Research Special Interest Group (MLER SIG) of the American Educational Research Association (AERA) and other national organizations

    What Forty Years of Numbers Tell Us: Reflections on Large, National Middle School Studies

    Get PDF
    Files attached below (in order) are "Special Interest Group Descriptions" (part 1), "Selected National Reports of Middle Level Education 1963-2003" (part 2), and "Selected National Reports of Middle Level Education 1963-2003" (part 3).Presented at the National Middle School Association Annual Convention.This presentation discusses forty years of middle school statistics

    Fundamentals for Student Success in the Middle Grades

    Get PDF
    Determining how to provide the best education possible for young adolescents begins with the answers to three essential questions: Who are young adolescents? What do we know about them, their abilities, interests and strengths? Based on what we know about young adolescents, what should schools do to provide a quality education for each and every student? And finally, is there evidence that these recommended practices improve student achievement? How do we know programs and practices designed specifically with young adolescents in mind make a difference? To answer these questions, we will first outline some of the developmental characteristics of young adolescents and look at the implications for teaching and learning. We will then look at national recommendations for schools based on what we know about young adolescents. Finally, we will consider some of the research that supports these recommendations

    High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins.</p> <p>Results</p> <p>We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus <it>Orpinomyces </it>PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the <it>celF </it>gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into <it>Escherichia coli</it>. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for <it>in vitro </it>transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved CelF mutants and corresponding optimized clones in expression-ready plasmids.</p> <p>Conclusion</p> <p>The multiplex method using an integrated automated platform for high-throughput screening in a functional proteomic assay allows rapid identification of plasmids containing optimized clones ready for use in subsequent applications including transformations to produce improved strains or cell lines.</p

    Banana seed genetic resources for food security: Status, constraints, and future priorities

    Get PDF
    Storing seed collections of crop wild relatives, wild plant taxa genetically related to crops, is an essential component in global food security. Seed banking protects genetic resources from degradation and extinction and provides material for use by breeders. Despite being among the most important crops in the world, banana and plantain crop wild relatives are largely under-represented in genebanks. Nevertheless, banana crop wild relative seed collections are in fact held in different countries, but these have not previously been part of reporting or analysis. To fill this gap, we firstly collated banana seed accession data from 13 institutions in 10 countries. These included 537 accessions containing an estimated 430,000 seeds of 56 species. We reviewed their taxonomic coverage and seed storage conditions including viability estimates. We found that seed accessions have low viability (25% mean) representing problems in seed storage and processing. Secondly, we surveyed 22 institutions involved in banana genetic resource conservation regarding the key constraints and knowledge gaps that institutions face related to banana seed conservation. Major constraints were identified including finding suitable material and populations to collect seeds from, lack of knowledge regarding optimal storage conditions and germination conditions. Thirdly, we carried out a conservation prioritization and gap analysis of Musaceae taxa, using established methods, to index representativeness. Overall, our conservation assessment showed that despite this extended data set banana crop wild relatives are inadequately conserved, with 51% of taxa not represented in seed collections at all; the average conservation assessment showing high priority for conservation according to the index. Finally, we provide recommendations for future collecting, research, and management, to conserve banana and plantain crop wild relatives in seed banks for future generations

    Maximizing genetic representation in seed collections from populations of self and cross-pollinated banana wild relatives

    Get PDF
    Background: Conservation of plant genetic resources, including the wild relatives of crops, plays an important and well recognised role in addressing some of the key challenges faced by humanity and the planet including ending hunger and biodiversity loss. However, the genetic diversity and representativeness of ex situ collections, especially that contained in seed collections, is often unknown. This limits meaningful assessments against conservation targets, impairs targeting of future collecting and limits their use. We assessed genetic representation of seed collections compared to source populations for three wild relatives of bananas and plantains. Focal species and sampling regions were M. acuminata subsp. banksii (Papua New Guinea), M. balbisiana (Viet Nam) and M. maclayi s.l. (Bougainville, Papua New Guinea). We sequenced 445 samples using suites of 16–20 existing and newly developed taxon-specific polymorphic microsatellite markers. Samples of each species were from five populations in a region; 15 leaf samples from different individuals and 16 seed samples from one infructescence (‘bunch’) were analysed for each population. Results: Allelic richness of seeds compared to populations was 51, 81 and 93% (M. acuminata, M. balbisiana and M. maclayi respectively). Seed samples represented all common alleles in populations but omitted some rarer alleles. The number of collections required to achieve the 70% target of the Global Strategy for Plant Conservation was species dependent, relating to mating systems. Musa acuminata populations had low heterozygosity and diversity, indicating self-fertilization; many bunches were needed (> 15) to represent regional alleles to 70%; over 90% of the alleles from a bunch are included in only two seeds. Musa maclayi was characteristically cross-fertilizing; only three bunches were needed to represent regional alleles; within a bunch, 16 seeds represent alleles. Musa balbisiana, considered cross-fertilized, had low genetic diversity; seeds of four bunches are needed to represent regional alleles; only two seeds represent alleles in a bunch. Conclusions: We demonstrate empirical measurement of representation of genetic material in seeds collections in ex situ conservation towards conservation targets. Species mating systems profoundly affected genetic representation in seed collections and therefore should be a primary consideration to maximize genetic representation. Results are applicable to sampling strategies for other wild species

    Conservation status assessment of banana crop wild relatives using species distribution modelling

    Get PDF
    Aim: Crop wild relatives (CWR) are an essential source of genetic material for the improvement of certain traits in related crop species. Despite their importance, increasing public, scientific and political support, large gaps exist in the amount of genetic material collected and conserved of many CWR. Here, we construct a dataset on the distribution of wild banana species (Musa spp.) and assess their risk and conservation status. We deal with the following questions: (a) What areas are potentially suitable for wild banana species? (b) How much of the wild banana diversity is currently at risk or insufficiently conserved ex and in situ? Location: Native distribution area of wild banana species, ranging from the northeastern states of India to north-eastern Australia. Methods: We assessed the potential environmental range of wild species using a species distribution modelling approach with MaxEnt. Extinction risk was evaluated following IUCN criterion B, and the ex and in situ conservation status was assessed using an indicator for biodiversity and sustainable development targets. Results: We found that 11 out of 59 assessed species can be considered as vulnerable and nine as endangered. Highest species richness was found along the border of south China and northern Vietnam, in the north-eastern states of India and on the Malayan peninsula. Our distribution modelling approach indicates that the northern Indo-Burmese region has the highest environmental suitability for most wild banana species and that lowland rain forests in general are highly suitable for bananas. Assessment of in and ex situ conservation status indicates that 56 out of 59 assessed species are currently insufficiently conserved ex situ and that 49 are of high priority for further conservation. Additional in situ conservation is of high priority for six species and of medium priority for 40 species. Main conclusions: To date, little of the banana CWR are sufficiently conserved both in and ex situ

    Regulation of seed germination by diurnally alternating temperatures in disturbance-adapted banana crop wild relatives (Musa acuminata)

    Get PDF
    Seed conservation of banana crop wild relatives (Musa L. spp.) is limited because of lack of knowledge about their germination ecology. Musa acuminata Colla, the most important banana crop wild relative, is distributed in tropical and subtropical Asian and Pacific rainforests and colonizes disturbed sites. The role of temperature in stimulating/inhibiting germination to detect disturbance when canopy gaps are formed is not well known. We assessed seed germination thermal requirements of three subspecies of M. acuminata using nine seed accessions which had been stored in the Millennium Seed Bank. Diurnally alternating temperature cycles were almost completely essential for germination compared with constant temperatures. Germination was optimal when the upper temperature of a diurnal cycle was at 35°C; the lower temperature of the cycle was less important. Subspecies occurrence coordinates were used to extract climate temperature data which were then compared against the temperature requirements for germination from our experiment results. Maximum temperatures of the warmest month across subspecies ranges were close to but below optimal germination temperatures, as were diurnal ranges, suggesting soil-warming at the micro-climate level following gap creation is important for M. acuminata seed germination. Additionally, pre-treatment for 3 months at 60% relative humidity at constant 25°C improved germination from 14 ± 10 (mean, standard deviation) to 41 ± 29% suggesting a period in the soil seed bank under the canopy may increase sensitivity to alternating temperature cycles. Overall viability was low (49 ± 28%), and considerable variance was caused by the different accessions. Germination remained somewhat inconsistent

    A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses.

    Get PDF
    Phylogenies are a central and indispensable tool for evolutionary and ecological research. Even though most angiosperm families are well investigated from a phylogenetic point of view, there are far less possibilities to carry out large-scale meta-analyses at order level or higher. Here, we reconstructed a large-scale dated phylogeny including nearly 1/8th of all angiosperm species, based on two plastid barcoding genes, matK (incl. trnK) and rbcL. Novel sequences were generated for several species, while the rest of the data were mined from GenBank. The resulting tree was dated using 56 angiosperm fossils as calibration points. The resulting megaphylogeny is one of the largest dated phylogenetic tree of angiosperms yet, consisting of 36,101 sampled species, representing 8,399 genera, 426 families and all orders. This novel framework will be useful for investigating different broad scale research questions in ecological and evolutionary biology

    Drying banana seeds for ex situ conservation

    Get PDF
    The ability of seeds to withstand drying is fundamental to ex situ seed conservation but drying responses are not well known for most wild species including crop wild relatives. We look at drying responses of seeds of Musa acuminata and Musa balbisiana, the two primary wild relatives of bananas and plantains, using the following four experimental approaches: (i)We equilibrated seeds to a range of relative humidity (RH) levels using non-saturated lithium chloride solutions and subsequently measured moisture content (MC) and viability. At each humidity levelwe tested viability using embryo rescue (ER), tetrazolium chloride staining and germination in an incubator.We found that seed viabilitywas not reduced when seedswere dried to 4% equilibrium relative humidity (eRH; equating to 2.5% MC). (ii)We assessed viability ofmature and less mature seeds using ER and germination in the soil and tested responses to drying. Findings showed that seeds must be fully mature to germinate and immature seeds had negligible viability. (iii) We dried seeds extracted from ripe/unripe fruit to 35–40% eRH at different rates and tested viability with germination tests in the soil. Seeds from unripe fruit lost viability when dried and especially when dried faster; seeds from ripe fruit only lost viability when fast dried. (iv) Finally, we dried and re-imbibed mature and less mature seeds and measured embryo shrinkage and volume change using X-ray computer tomography. Embryos of less mature seeds shrank significantly when dried to 15% eRH from 0.468 to 0.262 mm3, but embryos of mature seeds did not. Based on our results, mature seeds from ripe fruit are desiccation tolerant to moisture levels required for seed genebanking but embryos from immature seeds are mechanistically less able to withstand desiccation, especially when water potential gradients are high
    corecore