768 research outputs found

    Unintended and accidental medical radiation exposures in radiology: guidelines on investigation and prevention

    Get PDF
    This paper sets out guidelines for managing radiation exposure incidents involving patients in diagnostic and interventional radiology. The work is based on collation of experiences from representatives of international and national organizations for radiologists, medical physicists, radiographers, regulators, and equipment manufacturers, derived from an International Atomic Energy Agency Technical Meeting. More serious overexposures can result in skin doses high enough to produce tissue reactions, in interventional procedures and computed tomography, most notably from perfusion studies. A major factor involved has been deficiencies in training of staff in operation of equipment and optimization techniques. The use of checklists and time outs before procedures commence, and dose alerts when critical levels are reached during procedures can provide safeguards to reduce risks of these effects occurring. However, unintended and accidental overexposures resulting in relatively small additional doses can take place in any diagnostic or interventional X-ray procedure and it is important to learn from errors that occur, as these may lead to increased risks of stochastic effects. Such events may involve the wrong examinations, procedural errors, or equipment faults. Guidance is given on prevention, investigation and dose calculation for radiology exposure incidents within healthcare facilities. Responsibilities should be clearly set out in formal policies, and procedures should be in place to ensure that root causes are identified and deficiencies addressed. When an overexposure of a patient or an unintended exposure of a foetus occurs, the foetal, organ, skin and/or effective dose may be estimated from exposure data. When doses are very low, generic values for the examination may be sufficient, but a full assessment of doses to all exposed organs and tissues may sometimes be required. The use of general terminology to describe risks from stochastic effects is recommended rather than calculation of numerical values, as these are misleading when applied to individuals

    Material Characterization and Real-Time Wear Evaluation of Pistons and Cylinder Liners of the Tiger 131 Military Tank

    Get PDF
    Material characterisation and wear evaluation of the original and replacement pistons and cylinder-liners of Tiger 131 is reported. Original piston and cylinder-liner were operative in the Tigers’ engine during WWII. The replacement piston and cylinder-liner were used as substitutes and were obtained after failure in two hours of operation in the actual engine. Material characterisation revealed that the original piston was aluminium silicon hypereutectic alloy whereas the replacement piston was aluminium copper alloy with very low silicon content. Both original and replacement cylinder-liners consisted of mostly iron which is indicative of cast iron, a common material for this application. The replacement piston average surface roughness was found to be 9.09 ÎŒm while for replacement cylinder-liner it was 5.78 ÎŒm

    The Dynamic Universe: Realizing the Potential of Classical Time Domain and Multimessenger Astrophysics

    Get PDF
    In parallel with the multi-messenger revolution, major advances in time-domain astronomy across multiple science disciplines relevant to astrophysics are becoming more urgent to address. Aside from electromagnetic observations of gravitational wave events and explosive counterparts, there are a number of “classical” astrophysical areas that require new thinking for proper exploration in the time domain. How NASA, NSF, ESA, and ESO consider the 2020 USA Decadal Survey within the astronomy community, as well as the worldwide call to support and expand time domain and multi-messenger astrophysics, it is crucial that all areas of astrophysics, including stellar, galactic, Solar System, and exoplanetary science participate in the discussion, and that it not be made into an exclusive preserve of cosmological, high-energy, explosive and transient science. Time domain astronomy is used to explore many aspects of astrophysics–particularly concerning ground- and space-based mission science goals of exploring how the Universe works, understanding how did we get here, and are we alone. Time domain studies are already built into the core operations of many currently operating and future space telescopes (e.g., Roman, PLATO) as well as current and planned large areal ground-based surveys (e.g., Rubin). Time-domain observations designed for one scientific purpose, also lead to great discoveries in many other science areas. The recent advent of user-friendly hardware, software, observational approaches, and online data infrastructure has also helped make time domain observations especially suitable and appealing for citizen science projects. We provide a review of the current state of TDAMM alerts and observational protocols, revealing a wide array of software and applications, much of which is incompatible. Any conversation regarding TDAMM astrophysics should include all aspects of the field, including those aspects seen as classical applications

    A tri-dimensional approach for auditing brand loyalty

    Get PDF
    Over the past twenty years brand loyalty has been an important topic for both marketing practitioners and academics. While practitioners have produced proprietary brand loyalty audit models, there has been little academic research to make transparent the methodology that underpins these audits and to enable practitioners to understand, develop and conduct their own audits. In this paper, we propose a framework for a brand loyalty audit that uses a tri-dimensional approach to brand loyalty, which includes behavioural loyalty and the two components of attitudinal loyalty: emotional and cognitive loyalty. In allowing for different levels and intensity of brand loyalty, this tri-dimensional approach is important from a managerial perspective. It means that loyalty strategies that arise from a brand audit can be made more effective by targeting the market segments that demonstrate the most appropriate combination of brand loyalty components. We propose a matrix with three dimensions (emotional, cognitive and behavioural loyalty) and two levels (high and low loyalty) to facilitate a brand loyalty audit. To demonstrate this matrix, we use the example of financial services, in particular a rewards-based credit card

    Report on the 1st SPARC Stratospheric Network for the Assessment of Predictability (SNAP). April 24-26 April 2013, Reading, UK

    Get PDF
    Stratospheric Network for the Assessment of Predictability (SNAP), 24-26 April 2013, Reading, UKThe first SPARC Stratospheric Network for the Assessment of Predictability (SPARC-SNAP) workshop was organized in the Department of Meteorology, University of Reading, UK, from 24 to 26 April 2013. This was a joint workshop with 3rd SPARC Dynamical Variability (SPARC-DynVar) (Manzini et al., this issue) workshop 22-24 April with the 24th April as a joint day. The joint workshop was well attended and had around 100 participants (http://www.met.reading.ac.uk/~pn904784/DynVar_SNAP_Workshop/participant.html) from 16 countries in Europe, Asia, Africa, Australia, North America, and South America (Participants figure). In the SNAP part of workshop (including the joint day) there were two keynote address, nine invited talks, six contributory talks and 24 posters.The authors are grateful to the Natural Environment Research Council and WCRP-SPARC for their financial support

    Variant antigen repertoires in Trypanosoma congolense populations and experimental infections can be profiled from deep sequence data using universal protein motifs

    Get PDF
    African trypanosomes are vector-borne hemoparasites of humans and animals. In the mammal, parasites evade the immune response through antigenic variation. Periodic switching of the Variant Surface Glycoprotein (VSG) coat covering their cell surface allows sequential expansion of serologically distinct parasite clones. Trypanosome genomes contain many hundreds of VSG genes, subject to rapid changes in nucleotide sequence, copy number and chromosomal position. Thus, analysing, or even quantifying, VSG diversity over space and time presents an enormous challenge to conventional techniques. Indeed, previous population genomic studies have overlooked this vital aspect of pathogen biology for lack of analytical tools. Here we present a method for analysing population-scale VSG diversity in Trypanosoma congolense from deep sequencing data. Previously, we suggested that T. congolense VSG segregate into defined 'phylotypes' that do not recombine. In our dataset comprising 41 T. congolense genome sequences from across Africa, these phylotypes are universal and exhaustive. Screening sequence contigs with diagnostic protein motifs accurately quantifies relative phylotype frequencies, providing a metric of VSG diversity, called the 'Variant Antigen Profile'. We applied our metric to VSG expression in the tsetse fly, showing that certain, rare VSG phylotypes may be preferentially expressed in infective, metacyclic-stage parasites. Hence, variant antigen profiling accurately and rapidly determines VSG gene and transcript repertoire from sequence data, without need for manual curation or highly contiguous sequences. It offers a tractable approach to measuring VSG diversity across strains and during infections, which is imperative to understanding the host-parasite interaction at population and individual scales. [Abstract copyright: Published by Cold Spring Harbor Laboratory Press.
    • 

    corecore