733 research outputs found

    Core information sets for informed consent to surgical interventions:baseline information of importance to patients and clinicians

    Get PDF
    BackgroundConsent remains a crucial, yet challenging, cornerstone of clinical practice. The ethical, legal and professional understandings of this construct have evolved away from a doctor-centred act to a patient-centred process that encompasses the patient’s values, beliefs and goals. This alignment of consent with the philosophy of shared decision-making was affirmed in a recent high-profile Supreme Court ruling in England. The communication of information is central to this model of health care delivery but it can be difficult for doctors to gauge the information needs of the individual patient. The aim of this paper is to describe ‘core information sets’ which are defined as a minimum set of consensus-derived information about a given procedure to be discussed with all patients. Importantly, they are intended to catalyse discussion of subjective importance to individuals.Main bodyThe model described in this paper applies health services research and Delphi consensus-building methods to an idea orginally proposed 30 years ago. The hypothesis is that, first, large amounts of potentially-important information are distilled down to discrete information domains. These are then, secondly, rated by key stakeholders in multiple iterations, so that core information of agreed importance can be defined. We argue that this scientific approach is key to identifying information important to all stakeholders, which may otherwise be communicated poorly or omitted from discussions entirely. Our methods apply systematic review, qualitative, survey and consensus-building techniques to define this ‘core information’. We propose that such information addresses the ‘reasonable patient’ standard for information disclosure but, more importantly, can serve as a spring board for high-value discussion of importance to the individual patient.ConclusionThe application of established research methods can define information of core importance to informed consent. Further work will establish how best to incorporate this model in routine practice

    Core information sets for informed consent to surgical interventions:baseline information of importance to patients and clinicians

    Get PDF
    Abstract Background Consent remains a crucial, yet challenging, cornerstone of clinical practice. The ethical, legal and professional understandings of this construct have evolved away from a doctor-centred act to a patient-centred process that encompasses the patient’s values, beliefs and goals. This alignment of consent with the philosophy of shared decision-making was affirmed in a recent high-profile Supreme Court ruling in England. The communication of information is central to this model of health care delivery but it can be difficult for doctors to gauge the information needs of the individual patient. The aim of this paper is to describe ‘core information sets’ which are defined as a minimum set of consensus-derived information about a given procedure to be discussed with all patients. Importantly, they are intended to catalyse discussion of subjective importance to individuals. Main body The model described in this paper applies health services research and Delphi consensus-building methods to an idea orginally proposed 30 years ago. The hypothesis is that, first, large amounts of potentially-important information are distilled down to discrete information domains. These are then, secondly, rated by key stakeholders in multiple iterations, so that core information of agreed importance can be defined. We argue that this scientific approach is key to identifying information important to all stakeholders, which may otherwise be communicated poorly or omitted from discussions entirely. Our methods apply systematic review, qualitative, survey and consensus-building techniques to define this ‘core information’. We propose that such information addresses the ‘reasonable patient’ standard for information disclosure but, more importantly, can serve as a spring board for high-value discussion of importance to the individual patient. Conclusion The application of established research methods can define information of core importance to informed consent. Further work will establish how best to incorporate this model in routine practice

    Customizing hybrid products

    Get PDF
    We explore how the convergence of the digital and physical into hybrid products leads to new possibilities for customization. We report on a technology probe, a hybrid advent calendar with both paper form and digital layers of content, both of which were designed to be customizable. We reveal how over two hundred active users adapted its physical and digital aspects in various ways, some anticipated and familiar, but others surprising. This leads us to contribute concepts to help understand and design for hybrid customization – the idea of broad customization spanning physical and digital; end-to-end customization by different stakeholders along the value chain for a product; and the combination of these into customization maps

    Distributed N-body Simulation on the Grid Using Dedicated Hardware

    Full text link
    We present performance measurements of direct gravitational N -body simulation on the grid, with and without specialized (GRAPE-6) hardware. Our inter-continental virtual organization consists of three sites, one in Tokyo, one in Philadelphia and one in Amsterdam. We run simulations with up to 196608 particles for a variety of topologies. In many cases, high performance simulations over the entire planet are dominated by network bandwidth rather than latency. With this global grid of GRAPEs our calculation time remains dominated by communication over the entire range of N, which was limited due to the use of three sites. Increasing the number of particles will result in a more efficient execution. Based on these timings we construct and calibrate a model to predict the performance of our simulation on any grid infrastructure with or without GRAPE. We apply this model to predict the simulation performance on the Netherlands DAS-3 wide area computer. Equipping the DAS-3 with GRAPE-6Af hardware would achieve break-even between calculation and communication at a few million particles, resulting in a compute time of just over ten hours for 1 N -body time unit. Key words: high-performance computing, grid, N-body simulation, performance modellingComment: (in press) New Astronomy, 24 pages, 5 figure

    Faculty Recital: Steve Brown, guitar

    Get PDF

    The causes of the red sequence, the blue cloud, the green valley, and the green mountain

    Get PDF
    The galaxies found in optical surveys fall in two distinct regions of a diagram of optical colour versus absolute magnitude: the red sequence and the blue cloud with the green valley in between. We show that the galaxies found in a submillimetre survey have almost the opposite distribution in this diagram, forming a `green mountain'. We show that these distinctive distributions follow naturally from a single, continuous, curved Galaxy Sequence in a diagram of specific star-formation rate versus stellar mass without there being the need for a separate star-forming galaxy Main Sequence and region of passive galaxies. The cause of the red sequence and the blue cloud is the geometric mapping between stellar mass/specific star-formation rate and absolute magnitude/colour, which distorts a continuous Galaxy Sequence in the diagram of intrinsic properties into a bimodal distribution in the diagram of observed properties. The cause of the green mountain is Malmquist bias in the submillimetre waveband, with submillimetre surveys tending to select galaxies on the curve of the Galaxy Sequence, which have the highest ratios of submillimetre-to-optical luminosity. This effect, working in reverse, causes galaxies on the curve of the Galaxy Sequence to be underrepresented in optical samples, deepening the green valley. The green valley is therefore not evidence (1) for there being two distinct populations of galaxies, (2) for galaxies in this region evolving more quickly than galaxies in the blue cloud and the red sequence, (c) for rapid quenching processes in the galaxy population
    corecore