14 research outputs found

    Single cell transcriptome sequencing: A new approach for the study of mammalian sex determination

    No full text
    Mammalian sex determination is a highly complex developmental process that is particularly difficult to study due to the limited number of gonadal cells present at the bipotential stage, the large cellular heterogeneity in both testis and ovaries and the rapid sex-dependent differentiation processes. Single-cell RNA-sequencing (scRNA-seq) circumvents the averaging artifacts associated with methods traditionally used to profile bulk populations of cells. It is a powerful tool that allows the identification and classification of cell populations in a comprehensive and unbiased manner. In particular, scRNA-seq enables the tracing of cells along developmental trajectories and characterization of the transcriptional dynamics controlling their differentiation. In this review, we describe the current state-of-the-art experimental methods used for scRNA-seq and discuss their strengths and limitations. Additionally, we summarize the multiple key insights that scRNA-seq has provided to the understanding of mammalian sex determination. Finally, we briefly discuss the future of this technology, as well as complementary applications in single cell -omics in the context of mammalian sex determination

    A brief history of sex determination

    No full text
    A fundamental biological question that has puzzled, but also fascinated mankind since antiquity is the one pertaining to the differences between sexes. Ancient cultures and mythologies poetically intended to explain the origin of the two sexes; philosophy offered insightful albeit occasionally paradoxical perceptions about men and women; and society as a whole put forward numerous intuitive observations about the traits that distinguish the two sexes. However, it was only through meticulous scientific research that began in the 16th century, and gradual technical improvements that followed over the next centuries, that the study of sex determination bore fruit. Here, we present a brief history of sex determination studies from ancient times until today, by selectively interviewing some of the milestones in the field. We complete our review by outlining some yet unanswered questions and proposing future experimental directions

    Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex

    No full text
    During corticogenesis, excitatory neurons are born from progenitors located in the ventricular zone (VZ), from where they migrate to assemble into circuits. How neuronal identity is dynamically specified upon progenitor division is unknown. Here, we study this process using a high-temporal-resolution technology allowing fluorescent tagging of isochronic cohorts of newborn VZ cells. By combining this in vivo approach with single-cell transcriptomics in mice, we identify and functionally characterize neuron-specific primordial transcriptional programs as they dynamically unfold. Our results reveal early transcriptional waves that instruct the sequence and pace of neuronal differentiation events, guiding newborn neurons toward their final fate, and contribute to a road map for the reverse engineering of specific classes of cortical neurons from undifferentiated cells

    Pantoprazole, a proton-pump inhibitor, impairs human sperm motility and capacitation in vitro

    No full text
    The effects of PPIs on human sperm fertilizing capacity were poorly investigated although these drugs are widely over-used. Two publications retrospectively studied relationships between any PPI intake and sperm parameters from patients consulting at infertility clinics, but the conclusions of these reports were contradictory. Only two reports investigated the effects of lansoprazole and omeprazole on sperm motility and found lansoprazole to be deleterious and omeprazole to be neutral for sperm motility. The inconsistency of the PPI effect in the previous reports emphasizes the need for more basic research on human spermatozoa, taking into account the hypothesis that the different PPI drugs may have different effects on sperm physiology

    NRG1 signalling regulates the establishment of Sertoli cell stock in the mouse testis

    No full text
    Testis differentiation requires high levels of proliferation of progenitor cells that give rise to two cell lineages forming the testis, the Sertoli and the Leydig cells. Hence defective cell cycling leads to testicular dysgenesis that has profound effects on androgen production and fertility. The growth factor NRG1 has been implicated in adult Leydig cell proliferation, but a potential function in the fetal testis has not been analysed to date. Here we show that Nrg1 and its receptors ErbB2/3 are already expressed in early gonadal development. Using tissue-specific deletion, we further demonstrate that Nrg1 is required in a dose-dependent manner to induce proliferation of Sertoli progenitor cells and then differentiated Sertoli cells. As a result of reduced numbers of Sertoli cells, Nrg1 knockout mice display a delay in testis differentiation and defects in sex cord partitioning. Taken together Nrg1 signalling is essential for the establishment of the stock of Sertoli cells and thus required to prevent testicular hypoplasia

    The ReproGenomics Viewer: a multi-omics and cross-species resource compatible with single-cell studies for the reproductive science community

    No full text
    Motivation: Recent advances in transcriptomics have enabled unprecedented insight into gene expression analysis at a single-cell resolution. While it is anticipated that the number of publications based on such technologies will increase in the next decade, there is currently no public resource to centralize and enable scientists to explore single-cell datasets published in the field of reproductive biology. Results: Here, we present a major update of the ReproGenomics Viewer (RGV), a cross-species and cross-technology web-based resource of manually-curated sequencing datasets related to reproduction. The redesign of RGV's architecture is accompanied by significant growth of the database content including several landmark single-cell RNA sequencing datasets. The implementation of additional tools enables users to visualize and browse the complex, high-dimensional data now being generated in the reproductive field
    corecore