125 research outputs found

    A reading of interpretative models of minimalism in architecture

    Get PDF
    Publisher's Versio

    Complications of chronic necrotizing pulmonary aspergillosis: review of published case reports

    Get PDF
    Chronic necrotizing pulmonary aspergillosis (CNPA), a form of chronic pulmonary aspergillosis (CPA), affects immunocompetent or mildly immunocompromised persons with underlying pulmonary disease. These conditions are associated with high morbidity and mortality and often require long-term antifungal treatment. The long-term prognosis for patients with CNPA and the potential complications of CNPA have not been well documented. The aim of this study was to review published papers that report cases of CNPA complications and to highlight risk factors for development of CNPA. The complications in conjunction associated with CNPA are as follows: pseudomembranous necrotizing tracheobronchial aspergillosis, ankylosing spondylarthritis, pulmonary silicosis, acute respiratory distress syndrome, pulmonary Mycobacterium avium complex (MAC) disease, superinfection with Mycobacterium tuberculosis, and and pneumothorax. The diagnosis of CNPA is still a challenge. Culture and histologic examinations of bronchoscopically identified tracheobronchial mucus plugs and necrotic material should be performed in all immunocompromised individuals, even when the radiographic findings are unchanged. Early detection of intraluminal growth of Aspergillus and prompt antifungal therapy may facilitate the management of these patients and prevent development of complications

    Photoelectrochemical properties of sol–gel obtained titanium oxide

    Get PDF
    The photoelectrochemical properties of a sol–gel prepared titanium oxide coating applied onto a Ti substrate were investigated. The oxide coating was formed from an inorganic sol thermally treated in air at 350 °C. The coating consisted of agglomerates of narrow size distribution around 100 nm. The photoelectrochemical characteristics were evaluated by investigating the changes in the open circuit potential, current transients and impedance characteristics of a Ti/TiO2 electrode upon illumination by UV light in H2SO4 solution and in the oxidation of benzyl alcohol. The electrode was found to be active for photoelectrochemical reactions in the investigated solutions

    Boiling and Condensation in Two-Phase System Transients with Water Hammer

    Get PDF
    Water hammer in two-phase systems, induced by direct steam condensation on subcooled water or by separation of subcooled water column, results in the most intensive pipeline pressure surges. Amplitudes of pressure spikes along the course of these dangerous transients strongly depend on the condensation and evaporation rates. The present paper provides a literature overview of thermal-hydraulic models for the prediction of water hammer phenomenon in two-phase systems, together with an original mechanistic approach for the prediction of phase transition rates, based on the shape and size of vapor-liquid interfacial area and the phase transition potential expressed through vapor and liquid phase temperature difference. Available water hammer experimental conditions were numerically simulated with the new modeling approach. Driving parameters of boiling and condensation rates at the steam-water interfaces are evaluated, and a good agreement is shown between numerical results and experimental data of bulk two-phase flow parameters during water hammer transients

    Characterization of carbon fibrous material from platanus achenes as platinum catalysts support

    Get PDF
    Carbon materials with developed porosity are usually used as supports for platinum catalysts. Physico-chemical characteristics of the support influence the properties of platinum deposited and its catalytic activity. In our studies, we deposited platinum on carbon fibrous like materials obtained from platanus seeds - achenes. The precursor was chemically activated with different reagents: NaOH, pyrogallol, and H2O2, before the carbonization process. Platinum was deposited on all substrates to study the influence of the substrate properties on the activity of the catalyst. Carbon materials were characterized by nitrogen adsorption/desorption isotherms measurements, X-ray diffraction, and scanning electron microscopy. It was noticed that the adsorption characteristics of carbon support affected the structure of platinum deposits and thus their activity

    IgG Avidity: an Important Serologic Marker for the Diagnosis of Tick-Borne Encephalitis Virus Infection

    Get PDF
    A total of 52 serum samples from patients with symptoms suggestive of tick-borne encephalitis virus (TBEV) infection and positive IgM and/or IgG antibodies were tested for IgG avidity. Acute/recent TBEV infection was confirmed by low/borderline avidity index (AI) in 94.8% IgM positive/IgG positive samples, while in 5.2% high AI was found indicating persisting IgM antibodies. Majority of IgM negative/IgG positive samples (78.6%) showed high AI consistent with past TBEV infection. However, in 21.3% patients without measurable IgM antibodies current/recent infection was confirmed by AI. IgG avidity represents an additional serologic marker that improves diagnosis of TBEV, especially in cases of atypical antibody response

    Numerical Investigation of Nucleate Pool Boiling Heat Transfer

    Get PDF
    Multi-dimensional numerical simulation of the atmospheric saturated pool boiling is performed. The applied modelling and numerical methods enable a full representation of the liquid and vapour two-phase mixture behaviour on the heated surface, with included prediction of the swell level and heated wall temperature field. In this way the integral behaviour of nucleate pool boiling is simulated. The micro conditions of bubble generation at the heated wall surface are modelled by the bubble nucleation site density, the liquid wetting contact angle and the bubble grow time. The bubble nucleation sites are randomly located within zones of equal size, where the number of zones equals the nucleation site density. The conjugate heat transfer from the heated wall to the liquid is taken into account in wetted heated wall areas around bubble nucleation sites. The boiling curve relation between the heat flux and the heated wall surface temperature in excess of the saturation temperature is predicted for the pool boiling conditions reported in the literature and a good agreement is achieved with experimentally measured data. The influence of the nucleation site density on the boiling curve characteristic is confirmed. In addition, the influence of the heat flux intensity on the spatial effects of vapour generation and two-phase flow are shown, such as the increase of the swell level position and the reduced wetting of the heated wall surface by the heat flux increase.17th Symposium of the Society-of-Thermal-Engineers-of-Serbia (SIMTERM), Oct 20-23, 2015, Sokobanja, Serbi
    corecore