137 research outputs found

    Innovation in rehabilitation technology: technological opportunities and socio-economic implications

    Get PDF
    Innovation in stroke rehabilitation technology is discussed that, based on published epidemiological and economic data, represents an urgent case to deal with adopting a multidisciplinary perspective. A theoretical model is proposed for the evaluation of socioeconomic implications related to an early diagnosis and early and timely adjustments in the stroke treatment strategy. The model is applied to the case of a new rehabilitation technology: the ALLADIN diagnostic device. The model compares a traditional approach – ‘trial and error strategy’ – to the innovative one – ‘in progress evaluation’, considering the diagnostic and rehabilitative steps of the patient’s assistive route and assessing social and economic benefits of the innovative device. The new technology allows a precise initial assessment of both the severity of stroke and the level of lost functionality, as long as an evaluation of the expected return from different potential therapies. Moreover, supposing that higher severity of stroke implies higher level of disabilities and social costs, and that the negative impact increases as the level of disability increases, the use of innovative rehabilitation technologies would be more effective in the case of patients with severe and very severe stroke

    A multi-parametric wearable system to monitor neck movements and respiratory frequency of computer workers

    Get PDF
    Musculoskeletal disorders are the most common form of occupational ill-health. Neck pain is one of the most prevalent musculoskeletal disorders experienced by computer workers. Wrong postural habits and non-compliance of the workstation to ergonomics guidelines are the leading causes of neck pain. These factors may also alter respiratory functions. Health and safety interventions can reduce neck pain and, more generally, the symptoms of musculoskeletal disorders and reduce the consequent economic burden. In this work, a multi-parametric wearable system based on two fiber Bragg grating sensors is proposed for monitoring neck movements and breathing activity of computer workers. The sensing elements were positioned on the neck, in the frontal and sagittal planes, to monitor: (i) flexion-extension and axial rotation repetitions, and (ii) respiratory frequency. In this pilot study, five volunteers were enrolled and performed five repetitions of both flexion-extension and axial rotation, and ten breaths of both quite breathing and tachypnea. Results showed the good performances of the proposed system in monitoring the aforementioned parameters when compared to optical reference systems. The wearable system is able to well-match the trend in time of the neck movements (both flexion-extension and axial rotation) and to estimate mean and breath-by-breath respiratory frequency values with percentage errors ≤6.09% and ≤1.90%, during quiet breathing and tachypnea, respectively

    Effects of robotic upper limb treatment after stroke on cognitive patterns: A systematic review

    Get PDF
    BACKGROUND: Robotic therapy (RT) has been internationally recognized for the motor rehabilitation of the upper limb. Although it seems that RT can stimulate and promote neuroplasticity, the effectiveness of robotics in restoring cognitive deficits has been considered only in a few recent studies. OBJECTIVE: To verify whether, in the current state of the literature, cognitive measures are used as inclusion or exclusion criteria and/or outcomes measures in robotic upper limb rehabilitation in stroke patients. METHODS: The systematic review was conducted according to PRISMA guidelines. Studies eligible were identified through PubMed/MEDLINE and Web of Science from inception to March 2021. RESULTS: Eighty-one studies were considered in this systematic review. Seventy-three studies have at least a cognitive inclusion or exclusion criteria, while only seven studies assessed cognitive outcomes. CONCLUSION: Despite the high presence of cognitive instruments used for inclusion/exclusion criteria their heterogeneity did not allow the identification of a guideline for the evaluation of patients in different stroke stages. Therefore, although the heterogeneity and the low percentage of studies that included cognitive outcomes, seemed that the latter were positively influenced by RT in post-stroke rehabilitation. Future larger RCTs are needed to outline which cognitive scales are most suitable and their cut-off, as well as what cognitive outcome measures to use in the various stages of post-stroke rehabilitation

    Stroke care in young patients

    Get PDF
    The aims of this study were (i) to evaluate the clinical features of a consecutive series of young patients with ischemic stroke and (ii) to assess the changes in the clinical management of these patients over the study period. All consecutive cases of young adults aged 16 to 44 years, with ischemic stroke, that were admitted between 2000 and 2005 in 10 Italian hospitals were included. We retrospectively identified 324 patients. One or more vascular risk factors were present in 71.5% of the patients. With respect to the diagnostic process, an increase in the frequency of cerebral noninvasive angiographic studies and a decrease in the use of digital subtraction angiography were observed (P < 0.001 and P = 0.03, resp.). Undetermined causes decreased over 5-year period of study (P < 0.001). The diagnosis of cardioembolism increased. Thrombolysis was performed for 7.7% of the patients. PFO closure (8%) was the most frequently employed surgical procedure. In conclusion, the clinical care that is given to young patients with ischemic stroke changed over the study period. In particular, we detected an evolution in the diagnostic process and a reduction in the number of undetermined cases

    How to measure and to manage the risk of stroke

    No full text

    Treatment of intracerebral hemorrhage: the clinical evidences

    No full text

    Validation and assessment of a posture measurement system with magneto-inertial measurement units

    Get PDF
    Inappropriate posture and the presence of spinal disorders require specific monitoring systems. In clinical settings, posture evaluation is commonly performed with visual observation, electrogoniometers or motion capture systems (MoCaps). Developing a measurement system that can be easily used also in non-structured environments would be highly beneficial for accurate posture monitoring. This work proposes a system based on three magneto-inertial measurement units (MIMU), placed on the backs of seventeen volunteers on the T3, T12 and S1 vertebrae. The reference system used for validation is a stereophotogrammetric motion capture system. The volunteers performed forward bending and sit-to-stand tests. The measured variables for identifying the posture were the kyphosis and the lordosis angles, as well as the range of movement (ROM) of the body segments. The comparison between MIMU and MoCap provided a maximum RMSE of 5.6° for the kyphosis and the lordosis angles. The average lumbo-pelvic contribution during forward bending (41.8 ± 8.6%) and the average lumbar ROM during sit-to-stand (31.8 ± 9.8° for sitting down, 29.6 ± 7.6° for standing up) obtained with the MIMU system agree with the literature. In conclusion, the MIMU system, which is wearable, inexpensive and easy to set up in non-structured environments, has been demonstrated to be effective in posture evaluation
    • …
    corecore