2,190 research outputs found
Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet
Skin cancer, a major form of cancer, is a critical public health problem with
123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma
cases worldwide each year. The leading cause of skin cancer is high exposure of
skin cells to UV radiation, which can damage the DNA inside skin cells leading
to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed
visually employing clinical screening, a biopsy, dermoscopic analysis, and
histopathological examination. It has been demonstrated that the dermoscopic
analysis in the hands of inexperienced dermatologists may cause a reduction in
diagnostic accuracy. Early detection and screening of skin cancer have the
potential to reduce mortality and morbidity. Previous studies have shown Deep
Learning ability to perform better than human experts in several visual
recognition tasks. In this paper, we propose an efficient seven-way automated
multi-class skin cancer classification system having performance comparable
with expert dermatologists. We used a pretrained MobileNet model to train over
HAM10000 dataset using transfer learning. The model classifies skin lesion
image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36
percent and top3 accuracy of 95.34 percent. The weighted average of precision,
recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The
model has been deployed as a web application for public use at
(https://saketchaturvedi.github.io). This fast, expansible method holds the
potential for substantial clinical impact, including broadening the scope of
primary care practice and augmenting clinical decision-making for dermatology
specialists.Comment: This is a pre-copyedited version of a contribution published in
Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R.,
Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The
definitive authentication version is available online via
https://doi.org/10.1007/978-981-15-3383-9_1
Priority for the Worse Off and the Social Cost of Carbon
The social cost of carbon (SCC) is a monetary measure of the harms from carbon emission. Specifically, it is the reduction in current consumption that produces a loss in social welfare equivalent to that caused by the emission of a ton of CO2. The standard approach is to calculate the SCC using a discounted-utilitarian social welfare function (SWF)—one that simply adds up the well-being numbers (utilities) of individuals, as discounted by a weighting factor that decreases with time. The discounted-utilitarian SWF has been criticized both for ignoring the distribution of well-being, and for including an arbitrary preference for earlier generations. Here, we use a prioritarian SWF, with no time-discount factor, to calculate the SCC in the integrated assessment model RICE. Prioritarianism is a well-developed concept in ethics and theoretical welfare economics, but has been, thus far, little used in climate scholarship. The core idea is to give greater weight to well-being changes affecting worse off individuals. We find substantial differences between the discounted-utilitarian and non-discounted prioritarian SCC
Sunscreens - Which and what for?
It is well established that sun exposure is the main cause for the development of skin cancer. Chronic continuous UV radiation is believed to induce malignant melanoma, whereas intermittent high-dose UV exposure contributes to the occurrence of actinic keratosis as precursor lesions of squamous cell carcinoma as well as basal cell carcinoma. Not only photocarcinogenesis but also the mechanisms of photoaging have recently become apparent. In this respect the use of sunscreens seemed to prove to be more and more important and popular within the last decades. However, there is still inconsistency about the usefulness of sunscreens. Several studies show that inadequate use and incomplete UV spectrum efficacy may compromise protection more than previously expected. The sunscreen market is crowded by numerous products. Inorganic sunscreens such as zinc oxide and titanium oxide have a wide spectral range of activity compared to most of the organic sunscreen products. It is not uncommon for organic sunscreens to cause photocontact allergy, but their cosmetic acceptability is still superior to the one given by inorganic sunscreens. Recently, modern galenic approaches such as micronization and encapsulation allow the development of high-quality inorganic sunscreens. The potential systemic toxicity of organic sunscreens has lately primarily been discussed controversially in public, and several studies show contradictory results. Although a matter of debate, at present the sun protection factor (SPF) is the most reliable information for the consumer as a measure of sunscreen filter efficacy. In this context additional tests have been introduced for the evaluation of not only the protective effect against erythema but also protection against UV-induced immunological and mutational effects. Recently, combinations of UV filters with agents active in DNA repair have been introduced in order to improve photoprotection. This article reviews the efficacy of sunscreens in the prevention of epithelial and nonepithelial skin cancer, the effect on immunosuppression and the value of the SPF as well as new developments on the sunscreen market. Copyright (C) 2005 S. Karger AG, Basel
Guidelines on the measurement of ultraviolet radiation levels in ultraviolet phototherapy:report issued by the British Association of Dermatologists and British Photodermatology Group 2015
Scrotal cancer: Incidence, survival and second primary tumours in the Netherlands since 1989
Background: Since the 1970s there have been few epidemiological studies of scrotal cancer. We report on the descriptive epidemiology of scrotal cancer in the Netherlands. Methods: Data on all scrotal cancer patients were obtained from the Netherlands Cancer Registry (NCR) in the period 1989-2006 and age-standardised incidence rates were calculated also according to histology and stage. Relative survival was calculated and multiple primary tumours were studied. Results: The overall incidence rate varied around 1.5 per 1 000 000 person-years, most frequently being squamous cell carcinoma (27%), basal cell carcinoma (19%) and Bowen's disease (15%). Overall 5-year relative survival was 82%, being 77% and 95% for patients with squamous and basal cell carcinoma, respectively. In all, 18% of the patients were diagnosed with a second primary tumour. Conclusion: The incidence rate of scrotal cancer did not decrease, although this was expected; affected patients might benefit from regular checkups for possible new cancers
The Universal One-Loop Effective Action
We present the universal one-loop effective action for all operators of
dimension up to six obtained by integrating out massive, non-degenerate
multiplets. Our general expression may be applied to loops of heavy fermions or
bosons, and has been checked against partial results available in the
literature. The broad applicability of this approach simplifies one-loop
matching from an ultraviolet model to a lower-energy effective field theory
(EFT), a procedure which is now reduced to the evaluation of a combination of
matrices in our universal expression, without any loop integrals to evaluate.
We illustrate the relationship of our results to the Standard Model (SM) EFT,
using as an example the supersymmetric stop and sbottom squark Lagrangian and
extracting from our universal expression the Wilson coefficients of
dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version
accepted for publication in JHE
Light Stop Decay in the MSSM with Minimal Flavour Violation
In supersymmetric scenarios with a light stop particle and a
small mass difference to the lightest supersymmetric particle (LSP) assumed to
be the lightest neutralino, the flavour changing neutral current decay
can be the dominant decay channel and can
exceed the four-body stop decay for certain parameter values. In the framework
of Minimal Flavour Violation (MFV) this decay is CKM-suppressed, thus inducing
long stop lifetimes. Stop decay length measurements at the LHC can then be
exploited to test models with minimal flavour breaking through Standard Model
Yukawa couplings. The decay width has been given some time ago by an
approximate formula, which takes into account the leading logarithms of the MFV
scale. In this paper we calculate the exact one-loop decay width in the
framework of MFV. The comparison with the approximate result exhibits
deviations of the order of 10% for large MFV scales due to the neglected
non-logarithmic terms in the approximate decay formula. The difference in the
branching ratios is negligible. The large logarithms have to be resummed. The
resummation is performed by the solution of the renormalization group
equations. The comparison of the exact one-loop result and the tree level
flavour changing neutral current decay, which incorporates the resummed
logarithms, demonstrates that the resummation effects are important and should
be taken into account.Comment: 29 page
Normal levels of p27Xic1 are necessary for somite segmentation and determining pronephric organ size
The Xenopus laevis cyclin dependent kinase inhibitor p27Xic1 has been shown to be involved in exit from the cell cycle and differentiation of cells into a quiescent state in the nervous system, muscle tissue, heart and retina. We show that p27Xic1 is expressed in the developing kidney in the nephrostomal regions. Using over-expression and morpholino oligonucleotide (MO) knock-down approaches we show normal levels of p27Xic1 regulate pronephros organ size by regulating cell cycle exit. Knock-down of p27Xic1 expression using a MO prevented myogenesis, as previously reported; an effect that subsequently inhibits pronephrogenesis. Furthermore, we show that normal levels of p27Xic1 are required for somite segmentation also through its cell cycle control function. Finally, we provide evidence to suggest correct paraxial mesoderm segmentation is not necessary for pronephric induction in the intermediate mesoderm. These results indicate novel developmental roles for p27Xic1, and reveal its differentiation function is not universally utilised in all developing tissues
Using fractional exhaled nitric oxide (FeNO) to diagnose steroid-responsive disease and guide asthma management in routine care
Acknowledgements We thank Robin Taylor for his informative thinking and publications on FeNO, which have helped to influence and direct the thinking of the authors. Funding Extraction of the real-life dataset was funded by Research in Real Life Limited, the analysis of the dataset and the writing of this manuscript were co-funded (50:50) by Research in Real Life Limited and Aerocrine.Peer reviewedPublisher PD
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
- …
