18,083 research outputs found

    Capacitance of Gated GaAs/AlGaAs Heterostructures Subject to In-plane Magnetic Fields

    Full text link
    A detailed analysis of the capacitance of gated GaAs/AlGaAs heterostructures is presented. The nonlinear dependence of the capacitance on the gate voltage and in-plane magnetic field is discussed together with the capacitance quantum steps connected with a population of higher 2D gas subbands. The results of full self-consistent numerical calculations are compared to recent experimental data.Comment: 4 pages, Revtex. 4 PostScript figures in an uuencoded compressed file available upon request. Phys. Rev.B, in pres

    Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds

    Get PDF
    The fate of subducted oceanic lithosphere and its role in the planet-scale geochemical cycle is a key problem in solid Earth studies. Asthenospheric and transition zone minerals included in diamond have been interpreted as representing subducted oceanic crust based on inclusion REE patterns and strong 13C depletion of their host diamond (δ13C as low as -23 ‰). This view/explanation, however, has been challenged by alternative interpretations that variable carbon isotopic compositions either result from high temperature fractionation involving carbides, or reflect primordial, unhomogenised mantle reservoirs. Here, we present the first oxygen isotope analyses of inclusions in such ultradeep diamonds – majoritic garnets in diamond from Jagersfontein (South Africa). The oxygen isotope compositions provide unambiguous evidence for derivation of the inclusions from subducted crustal materials. The δ18OVSMOW values of the majorites range from +8.6 ‰ to +10.0 ‰, well outside that of ambient mantle (+5.5 ±0.4 ‰) and indicate that the protoliths were very heavily weathered at relatively low temperatures. When this information is combined with the broadly eclogitic composition of the majoritic garnets, a derivation from subducted sea-floor basalts is implied. Based on the association between the heavy oxygen and light carbon, the light carbon isotope composition cannot relate to deep mantle processes and is also ultimately derived from the crust

    Digital flight control research

    Get PDF
    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator

    Broad Iron Emission from Gravitationally Lensed Quasars Observed by Chandra

    Get PDF
    Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0<z<4.5 observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local AGN, we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3-sigma level. This implies that iron emission from the inner disk is relatively common in the population of lensed quasars, and in turn further demonstrates that, with additional observations, this population represents an opportunity to significantly extend the sample of AGN spin measurements out to high-redshift.Comment: 5 pages, 2 figures, accepted for publication in Ap

    Quark Effects in the Gluon Condensate Contribution to the Scalar Glueball Correlation Function

    Full text link
    One-loop quark contributions to the dimension-four gluon condensate term in the operator product expansion (OPE) of the scalar glueball correlation function are calculated in the MS-bar scheme in the chiral limit of nfn_f quark flavours. The presence of quark effects is shown not to alter the cancellation of infrared (IR) singularities in the gluon condensate OPE coefficients. The dimension-four gluonic condensate term represents the leading power corrections to the scalar glueball correlator and, therein, the one-loop logarithmic contributions provide the most important condensate contribution to those QCD sum-rules independent of the low-energy theorem (the subtracted sum-rules).Comment: latex2e, 6 pages, 7 figures embedded in latex fil

    PSN13 REFINEMENT AND REDUCTION OF THE IMPACT OF PSORIASIS QUESTIONNAIRE: CLASSICAL TEST THEORY VS RASCH ANALYSIS

    Get PDF

    Primordial nucleosynthesis as a probe of fundamental physics parameters

    Full text link
    We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference (for the 4He abundance), of the nucleon mass (for deuterium) and of A=3,4,7 binding energies (for 3He, 6Li and 7Li). A second step relates the nuclear parameters to the parameters of the Standard Model of particle physics. The deuterium, and, above all, 7Li abundances depend strongly on the average light quark mass hat{m} \equiv (m_u+m_d)/2. We calculate the behaviour of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and 4He abundances are only weakly affected.Comment: v2: 34 pages, 2 figures, typo in last GUT scenario corrected, added discussion and graph of nonlinear behaviour in GUT scenarios, added short section discussing binding of dineutron and 8Be, refs added, conclusions unaltered. Accepted for publication, Phys. Rev.

    Wide-field mid-infrared and millimetre imaging of the high-redshift radio galaxy, 4C41.17

    Get PDF
    We present deep 350- and 1200-micron imaging of the region around 4C41.17 -- one of the most distant (z = 3.792) and luminous known radio galaxies -- obtained with the Submillimeter High Angular Resolution Camera (SHARC-II) and the Max Planck Millimeter Bolometer Array (MAMBO). The radio galaxy is robustly detected at 350- and 1200-micron, as are two nearby 850-micron-selected galaxies; a third 850-micron source is detected at 350-micron and coincides with a ~ 2-sigma feature in the 1200-micron map. Further away from the radio galaxy an additional nine sources are detected at 1200-micron, bringing the total number of detected (sub)millimeter selected galaxies (SMGs) in this field to 14. Using radio images from the Very Large Array (VLA) and Spitzer mid-infrared (mid-IR) data, we find statistically robust radio and/or 24-micron counterparts to eight of the 14 SMGs in the field around 4C41.17. Follow-up spectroscopy with Keck/LRIS has yielded redshifts for three of the eight robustly identified SMGs, placing them in the redshift range 0.5 < z < 2.7, i.e. well below that of 4C41.17. We infer photometric redshifts for a further four sources using their 1.6-micron (rest-frame) stellar feature as probed by the IRAC bands; only one of them is likely to be at the same redshift as 4C41.17. Thus at least four, and as many as seven, of the SMGs within the 4C41.17 field are physically unrelated to the radio galaxy. With the redshift information at hand we are able to constrain the observed over-densities of SMGs within radial bins stretching to R=50 and 100" (~ 0.4 and ~ 0.8Mpc at z ~ 3.8) from the radio galaxy to ~ 5x and ~ 2x that of the field, dropping off to the background value at R=150". [Abridged]Comment: 20 pages, 9 figures, accepted for publication in MNRA

    Nonlinear Circuits

    Get PDF
    Contains research objectives and reports on two research projects

    Scaling laws of solar and stellar flares

    Full text link
    In this study we compile for the first time comprehensive data sets of solar and stellar flare parameters, including flare peak temperatures T_p, flare peak volume emission measures EM_p, and flare durations t_f from both solar and stellar data, as well as flare length scales L from solar data. Key results are that both the solar and stellar data are consistent with a common scaling law of EM_p ~ T_p^4.7, but the stellar flares exhibit ~250 times higher emission measures (at the same flare peak temperature). For solar flares we observe also systematic trends for the flare length scale L(T_p) ~ T_p^0.9 and the flare duration t_F(T_p) ~ T_p^0.9 as a function of the flare peak temperature. Using the theoretical RTV scaling law and the fractal volume scaling observed for solar flares, i.e., V(L) ~ L^2.4, we predict a scaling law of EM_p ~ T_p^4.3, which is consistent with observations, and a scaling law for electron densities in flare loops, n_p ~ T_p^2/L ~ T_p^1.1. The RTV-predicted electron densities were also found to be consistent with densities inferred from total emission measures, n_p=(EM_p/q_V*V)^1/2, using volume filling factors of q_V=0.03-0.08 constrained by fractal dimensions measured in solar flares. Our results affect also the determination of radiative and conductive cooling times, thermal energies, and frequency distributions of solar and stellar flare energies.Comment: 9 Figs., (paper in press, The Astrophsycial Journal
    • …
    corecore