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RESEARCH OBJECTIVES

This research is aimed at a variety of problems, including piecewise-linear function

generation for analog computation, analysis of oscillations in electronic systems, and the

development of useful circuit models for nonlinear devices. The general objectives of

this group are: to gain a better understanding of nonlinear circuit theory and to further

the advancement of methods of nonlinear analysis.
S. J. Mason

A. PIECEWISE-LINEAR TRANSFER FUNCTION SYNTHESIS

Some typical piecewise-linear unit functions that form the basis for transfer function

synthesis for one and two variables were discussed in the Quarterly Progress Report

of July 15, 1955. It was stated that generalization of the synthesis procedure of functions

of more than two independent variables is fairly straightforward. This generalization

is presented here.

The problem is as follows: Given y = f(x 1 , x 2 ... xn), an arbitrary function of n

variables tabulated at the vertices of a hypercubical grid of tabulation in the n-

dimensional independent variable space; construct a network containing linear elements

and ideal diodes only that will produce a piecewise-linear and continuous function taking

on the prescribed values at the points of tabulation.

The crux of the problem is the development of a scheme for interpolating continu-

ously between the given points with a piecewise-linear function. Ordinary linear inter-

polation is a satisfactory method for functions of one variable. For two variables, the

logical extension of linear interpolation, bilinear interpolation, produces a function of

the form

y = a + alx1 + aZx Z + alZx1X Z

Because of the product term, this function is clearly not piecewise-linear and therefore

is inadmissible, since it cannot be synthesized by using the components that we have

postulated. Extension to more variables produces still more product terms.

In the Quarterly Progress Report of July 15, 1954, a way out of this dilemma for

functions of two variables was indicated. This method consists of dividing each square

of tabulation in the independent-variable plane into two triangles by drawing one diagonal

of the square and then, in defining a function that is linear over each triangle and that

takes on the prescribed values at the points of tabulation. This is a valid piecewise-

linear interpolation function. Figure XXI-1 shows a portion of the x1 - x2 plane divided

in this manner by drawing the lines x 1 -x z + mA = 0 (where A is the interval of tabulation

and m = 0, 1, -1, 2, -2, ... ).
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Fig. XXI-1. Simplicial subdivision of x 1 -X 2 plane.

By generalizing this procedure to an n-dimensional tabulation, each n-dimensional

hypercube in the grid of tabulation can be divided into n-simplices by passing all n - 1

dimensional hyperplanes of the form

x.-x.+mA = 0 i#j
1 ]

i = 1,2 .. . ,n

j = 1, 2,..., n

m = 0, 1, 2, ...

(An n-simplex may be defined as the least convex set containing n + 1 linearly inde-

pendent points. For example, for n = 1 it is a line segment including its end points; for

n = 2, a triangle; for n = 3, a tetrahedron, and so on.) It can be shown that this mode of

subdivision of the independent variable space divides each n-cube into n! simplices that

are nonintersecting except for their bounding surfaces and whose vertices correspond

to the points of tabulation. Figure XXI-1 indicates such a subdivision for n = 2, and

Fig. XXI-2 shows the subdivision of one cube of the independent variable space for n = 3.

(Note that it is divided into n! = 6 tetrahedra, which are slightly separated from each

other for purposes of illustration.) Although other methods of subdivision are possible,
this particular one was chosen because of its simplicity.

Now a function can be defined that is linear over each simplex and takes on the

prescribed values at the points of tabulation (since a linear function of n-variables is

uniquely determined by the values it assumes at n + 1 linearly independent points in the

independent variable space). This definition produces a piecewise-linear function that

has the desired properties.
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Fig. XXI-3. Universal unit pyramid.

Fig. XXI-2. Simplicial subdivision of cube.

Fig. XXI-4. Universal unit pyramid network.

Fig. XXI-5. Generator of eo = f(x x z , . .. x )
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1. Realization of the Function

The function defined above can be generated as the superposition of a number

of simpler functions which will be called "universal unit pyramid" functions. The n-

dimensional unit pyramid function centered over the tabulated point p will be denoted

by y = fp (x x Z ... . xn); it is defined as follows:

1. fp is linear over each simplex in the independent variable space (according to the

definition of the simplices given above).

2. f = 1 at the point p (its apex or center).

3. f = 0 at every other vertex of the grid of tabulation.
P

A function of this kind is piecewise-linear and continuous and can be written in the form

y = f (x,1 x... xn) = [(yp , Ypm) . 0] m = (n+l)!

where each ypj is a linear function of the form

y.=a. +a x +a x + .. +a.x
P Pjo pjlX apjg2 2 pjn n

The symbolism was explained in the Quarterly Progress Report of July 15, 1954.

Figure XXI-3 shows the surface formed by this function for n = 2; Fig. XXI-4 shows

the form of a network for realizing the function for any n. The potentiometer permits

scaling of the function with a positive constant less than one.

A little reflection should convince the reader that summation of a number of functions

of this kind suitably scaled (one centered over each point in the grid of tabulation) will

produce any arbitrary function of n-variables satisfying the conditions stated initially.

Figure XXI-5 is a block diagram of such a general function generator. The value

of the function at any tabulated point is "programed" by setting the potentiometer

controlling the scale factor of the unit function centered over that point. The switches

provide for negative coefficients.

T. E. Stern

B. TUNED CIRCUITS CONTAINING "UNSUITABLE" NEGATIVE RESISTANCE

The free motions of n th-order linear dissipative systems (i. e., systems containing

n independent energy storage elements) are continuous functions of time which have

continuous first n - 1 derivatives. Some nonlinear systems, on the contrary, have dis-

continuous free motions. A second-order nonlinear system having a stable, discontinu-

ous periodic motion is described in reference 1. In this report a second-order system

having unstable discontinuous motion is analyzed.

A current-controlled negative resistance connected to a series-tuned circuit (or its
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dual, a voltage-controlled negative con-

lI L ductance connected to a parallel-tuned
circuit) is "suitable" for producing stable

periodic oscillations, which are almost-
Fig. XXI-6. Current-controlled negative harmonic in the control-variable in the

resistance and parallel-tuned
circuit. case of a low-loss tuned circuit. We

treat the "unsuitable" connection of a

current-controlled negative resistance and a parallel-tuned circuit (Fig. XXI-6), or its

dual. This yields a bistable circuit in which the relaxation oscillations, which appear

in a circuit containing the arc and capacitor, have become unstable.

In order to describe the circuit by a system of differential equations containing

single-valued functions only, we choose as variables i, iL. These obey

diL
L - -v

dt
(1)

C dv -i
dt L

The negative resistance is characterized by

v = r I (2)

where f is single-valued, bounded, and continuous for finite i; f'() 6 0 for i 9 I;

and f"(t) 0 for jii >I. Normalizing

i iL
x- i Y-I

we rewrite Eq. 1

dy r
= - f(x)

dt L

dx _ yx (3)

dt rC f'(x)

Eliminating y we obtain an equation of motion

f'(x)x + f"(x) x + trC1 + - = 0 (4)
LC

which involves single-valued functions only, but is highly nonlinear.

As a starting point for our qualitative analysis we eliminate the time from Eq. 3,
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and obtain a first-order differential equation describing the trajectories of all possible

motions in the phase plane x, y:

dy 2  f(x) f'(x)

dx y - x

where Q = r\L ). For simplicity, we choose the usual cubic characteristic:

f(x) = -x 1 - x2) (6)

with f'(x) = -(1 - x 2 ) (see Fig. XXI-7).

The phase portrait is characterized by the singular points of Eq. 3, where dy/dt =

dx/dt = 0. These points, Pi(xi, Yi), occur for f(xi) = 0, Yi = xi: P1(0) is an unstable

node for Q < 1/2, or an unstable focus for Q > 1/2; P 2(3, v53), P (- v3, - V) is a stable

node for Q < 1/4, or a stable focus for Q > 1/4. At these singular points the motion

(Eq. 3) is determined, the trajectory (Eq. 5) is indeterminate.

The lines x = +1, y t x are loci of critical points, at which the system of Eqs. 3

ceases to determine the motion uniquely: as Ixl - 1, IxI - oo for any y * x. This means

that when Ixl -1, a discontinuous jump in x occurs toward another finite point in the

x, y plane. The end point of this jump cannot be determined from the system of Eqs. 3,

but is uniquely determined by the added "jump condition," which, on the basis of con-

tinuity of stored energy in any physical storage element, requires that v[-f(x)] and

iL[-y] be continuous during the jump. Thus a point (±1, y), y < +1, is transformed by

the jump into the point (T2;y). The points P 3 (1, 1), P3(-I, -1) are neither singular nor

critical points; paths passing through these points have a discontinuity in direction.

With these features of the phase portrait in mind, we have drawn some trajectories

(by means of isoclines) for Q = 1, Fig. XXI-8, and Q = 0. 1, Fig. XXI-9. In Fig. XXI-8

we distinguish two sets of trajectories starting with x(0) > 1. (Motions starting with

Fig. XXI-7. Analytical negative resistance characteristic.
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Fig. XXI-8. Phase portrait; Q = 1.

Fig. XXI-9. Phase portrait; Q = 0. 1.
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Fig. XXI-10. Experimental negative resistance characteristic.

(a) (b)

Fig. XXI-11. i,iL-plane: (a) Q = 0. 85; (b) Q = 0. 31.

x(O)( < 1 do not differ from those described below, once the representative point has

jumped out of the region Ix < 1.) One set contains paths like T 1 or T 2, which approach

P2 continuously or by successive discontinuous "cycles"; the other contains paths like

T 3 or T 4 , which approach PI by successive "cycles." It follows that a discontinuous

limit cycle of small y-variation, with 1 -< I x 2, exists. The trajectory T leading

into it divides the region x > 1 in two parts: any motion starting inside T tends toward

PZ as t -coo, while a motion starting outside of T tends toward P2 or P 2 . Therefore

the limit cycle is unstable (since a slight departure of the representative point from the

limit cycle tends to carry the point farther away from it and causes it to end up at P2 or

PI), and the relaxation oscillation corresponding to it is physically nonexistent. There
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are no other limit cycles (continuous or not) in the whole x, y plane.

We conclude that the circuit of Fig. XXI-6, with Q = 1, has no stable periodic oscil-

lations and that for t -oo it tends to either of the two stable states of equilibrium with

v = 0.

The same holds true for Q << 1, as inspection of Fig. XXI-9 reveals. A proof for

the instability of the limit cycle in this case has been given for a piecewise-linear

negative resistance characteristic. The conclusion is unaffected by the particular

shape of the negative resistance characteristic; it remains valid also if incidental

damping of the tuned circuit is taken into account, or if pertinent small stray storage

parameters are included in the analysis (in which case the jumps are replaced by rapid,

continuous motions).

Thus, in general, the "unsuitable" connection of negative resistance and tuned cir-

cuit results in a bistable circuit, where no sustained oscillation is possible.

Experimental records of relevant portions of the phase portrait that support this

conclusion were obtained with the negative resistance characteristic of Fig. XXI-10

and are shown in Figs. XXI-lla and b.

J. Gross
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