16,179 research outputs found
Statistical Filtering of Space Navigation Measurements
Statistical filtering of space navigation measurement
Optimization of midcourse velocity corrections
Optimum time to apply single midcourse velocity correction and optimum schedule for corrections in variable time-of-arrival guidance - geometrical mode
Optimized production of large Bose Einstein Condensates
We suggest different simple schemes to efficiently load and evaporate a
''dimple'' crossed dipolar trap. The collisional processes between atoms which
are trapped in a reservoir load in a non adiabatic way the dimple. The
reservoir trap can be provided either by a dark SPOT Magneto Optical Trap, the
(aberrated) laser beam itself or by a quadrupolar or quadratic magnetic trap.
Optimal parameters for the dimple are derived from thermodynamical equations
and from loading time, including possible inelastic and Majorana losses. We
suggest to load at relatively high temperature a tight optical trap. Simple
evaporative cooling equations, taking into account gravity, the possible
occurrence of hydrodynamical regime, Feshbach resonance processes and three
body recombination events are given. To have an efficient evaporation the
elastic collisional rate (in s) is found to be on the order of the
trapping frequency and lower than one hundred times the temperature in
micro-Kelvin. Bose Einstein condensates with more than atoms should be
obtained in much less than one second starting from an usual MOT setup.Comment: 14 page
Laboratory von H\'amos X-ray Spectroscopy for Routine Sample Characterization
High energy resolution, hard X-ray spectroscopies are powerful element
selective probes of the electronic and local structure of matter, with diverse
applications in chemistry, physics, biology and materials science. The routine
application of these techniques is hindered by the complicated and slow access
to synchrotron radiation facilities. Here we propose a new, economic, easily
operated laboratory high resolution von H\'amos type X-ray spectrometer, which
offers rapid transmission experiments for X-ray absorption, and is also capable
of recording X-ray emission spectra. The use of a cylindrical analyzer crystal
and a position sensitive detector enabled us to build a maintenance free,
flexible setup with low operational costs, while delivering synchrotron grade
signal to noise measurements in reasonable acquisition times. We demonstrate
the proof of principle and give examples for both measurement types. Finally,
tracking of a several day long chemical transformation, a case better suited
for laboratory than synchrotron investigation, is also presented
Interaction Effects in Conductivity of Si Inversion Layers at Intermediate Temperatures
We compare the temperature dependence of resistivity \rho(T) of Si MOSFETs
with the recent theory by Zala et al. This comparison does not involve any
fitting parameters: the effective mass m* and g*-factor for mobile electrons
have been found independently. An anomalous increase of \rho with temperature,
which has been considered a signature of the "metallic" state, can be described
quantitatively by the interaction effects in the ballistic regime. The in-plane
magnetoresistance \rho(B) is qualitatively consistent with the theory; however,
the lack of quantitative agreement indicates that the magnetoresistance is more
susceptible to the sample-specific effects than \rho(T).Comment: 4 pages, 5 figures. References update
Anomalous Rashba spin splitting in two-dimensional hole systems
It has long been assumed that the inversion asymmetry-induced Rashba spin
splitting in two-dimensional (2D) systems at zero magnetic field is
proportional to the electric field that characterizes the inversion asymmetry
of the confining potential. Here we demonstrate, both theoretically and
experimentally, that 2D heavy hole systems in accumulation layer-like single
heterostructures show the opposite behavior, i.e., a decreasing, but nonzero
electric field results in an increasing Rashba coefficient.Comment: 4 pages, 3 figure
Digital flight control research
The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator
Predicted signatures of p-wave superfluid phases and Majorana zero modes of fermionic atoms in RF absorption
We study the superfluid phases of quasi-2D atomic Fermi gases interacting via
a p-wave Feshbach resonance. We calculate the absorption spectra of these
phases under a hyperfine transition, for both non-rotating and rotating
superfluids. We show that one can identify the different phases of the p-wave
superfluid from the absorption spectrum. The absorption spectrum shows clear
signatures of the existence of Majorana zero modes at the cores of vortices of
the weakly-pairing phase
Implementation of a Standardized Handoff System for a General Surgery Residency Program
Introduction:
The I-PASS Handoff Bundle is an evidence based standardized set of educational materials designed to decrease handoff failures in patient care.
Two of every three sentinel events , the most serious events reported to the Joint Commission, are due to failures of communication, including miscommunication during patient care handoffs.
Implementation of the I-PASS method results in decreased medical errors and preventable adverse events
There are few studies that evaluate this validated method in the context of a General Surgery resident program
We aim to implement the I-PASS system into the transition of care process for General Surgery residents at our institution, and to analyze of the quality of the handoff process before and after the implementation.https://jdc.jefferson.edu/patientsafetyposters/1047/thumbnail.jp
- …