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OPTIMIZATION OF MIDCOURSE VELOCITY CORRECTIONS

by Dr. Robert G. Stern and Dr. James E. Potter

Staff Engineers Experimental Astronomy Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

The concept of a six-dimensional state space
is used to develop the fundamental equations of
linearized midcourse guidance. Both fixed end-
point (fixed-time-of-arrival) and variable end-
point (variable-time-of-arrival) problems are
considered. It is shown that the variable-time-
of-arrival problem can be simplified mathemat-~
ically by the introduction of a special coordinate
system, which is called the critical-plane co-
ordinate system.

A method is developed for determining the
optimum time at which to apply a single mid-
course correction the effect of which is to satisfy
a set of position constraints. The correction is
"optimum" in the sense that its magnitude is
minimized. For a given nominal trajectory, the
time of the correction depends on the predicted
miss vector at the destination. The method is
particularly simple to apply in the case of
variable-time-of-arrival guidance; by exploiting
the critical-plane coordinate system, a single
curve can be prepared prior to the flight to in-
dicate the optimum correction time as a function
of a miss parameter which is determined from
in-flight navigational measurements.

Multiple-correction strategies are then in-
vestigated. A method is developed for deter-
mining an optimum schedule of midcourse cor-
rections. The optimum schedule is the one for
which the sum of the magnitudes of all correc-
tions is minimized. It is proved that the number
of corrections in an optimum schedule is no
greater than the number of constraints to be
satisfied at the nominal time of arrival at the
destination.

In position-constrained variable-time-of-
arrival guidance there are only two constraints
at the nominal time of arrival; hence there are
at most two corrections in the optimum sched-
ule. The optimum two-correction strategy is
compared with the optimum single-correction
strategy. It is shown that for certain ranges of
the miss parameter two corrections can effect a
saving in total magnitude of velocity correction,
while in other ranges no improvement can be ob-
tained from two corrections. A geometric con-
struction, based on the theory of convex sets, is
used to determine the ranges of miss parameter
in which two corrections are preferable, andalso
the times and components of both corrections
when they are preferable.

It may be noted that the developments in this
paper are deterministic rather than statistical.
No consideration is given to the uncertainties of

the navigational measurements; it is assumed

that a sufficient number of measurements has
been made during the flight so that the error in the
predicted miss vector at the destination is negli-
gible. The control action taken is determined by
the predicted miss vector.,

1. INTRODUCTION

Midcourse guidance systems for space vehicles
can be separated into two classes — fixed-time-of-
arrival (FTA) systems and variable-time-of-
arrival (VTA) systems. In the former a set of
constraints on the vehicle's state relative to the
target body must be satisfied at a specified ter-
minal time; in the latter the same types of con-
straints must be satisfied, but the actual terminal
time at which they are satisfied is permitted to
vary slightly from the predetermined nominal ter-
minal time. By relaxing the specification on time
of arrival, the VTA system permits more flexi-
bility in the development of guidance laws.

The constraints most commonly specified are
the three components of the vehicle's position
relative to the target. Battin{(1) Noton, Cutting,
and Barnes(2), and McLean, Schmidt, and
McGee(3), among others, have shown how linear
theory can be applied to compute the components
of a single small step change in velocity that will
satisfy a set of three position constraints. The
theory depends on the availability of a precom-
puted reference trajectory relative to which the
vehicle's actual trajectory can be defined. The
components of the required velocity change,
usually referred to as the ''correction,” vary
linearly with the predicted deviation of the ve-
hicle's actual position from the desired position
at the nominal time of arrival at the destination.

Breakwell(4), (5) attacks the problem of select-
ing the optimum times at which a series of mid-
course corrections should be made. The optimi-
zation criterion is that the total fuel expenditure
(i.e., the sum of the magnitudes of the velocity
steps) be minimized. The analysis is statistical,
based on a priori knowledge of the variances of the
uncertainties in the vehicle's initial state, in the
observations, and in the corrections applied. A
more recent statistical study, containing computer
results for a number of simulated interplanetary
missions, has been made by White, Callas, and
Cicolani, (6)

The present paper, like those just cited, deals
with optimizing a correction schedule, First, a
method is developed for determining the optimum

* Superior numbers refer to similarly-numbered references at the end of this paper.




time at which to apply a single midcourse cor-
rection that satisfies all the position constraints.
Then optimum multiple-correction strategies
are investigated and compared with the optimum
single-correction strategy. The strategies de-
veloped in this paper, unlike those in the pre-
vious papers, are deterministic rather than sta-
tistical. The correction schedule depends on
the predicted position variation at the nominal
time of arrival at the destination; it does not de-
pend on the uncertainties in the measured or
controlled quantities.

As a preliminary to the development of the
optimization procedure with which this paper is
primarily concerned, the next two sections
formulate the basic equations of midcourse guid-
ance and describe the critical-plane coordinate
system, which simplifies the analysis of VTA
guidance,

2, MIDCOURSE GUIDANCE THEORY

The position and velocity of a space vehicle
on its trajectory can be represented by the six-
component state vector x,

r
X =l J (2. 1)
v

r and v are the position and velocity vectors,
respectively, of the vehicle with respect to the
origin of the coordinate system. The equations
of motion of the vehicle have the form

X = _f<>,<,.t>+1)\:;l Z c b -t (2.2)

i)

t the rate of change of the state vector with
t.me in the absence of any control action. ¢

is a corrective veloeity change resulting from
an acceleration impulse applied at time .
G(t - 1K) is the Dirac delta tunction at fi.

There are p impulses during the tlight, M is
a 6-by-3 compatibility matrix, relating the
six~dimensional X to the three-dimensional ¢

3] (2. 3)

* »*
03 and I3 are the 3-by-3 zero matrix and the
3-by-3 identity matrix, respectively,

The solution of Eq. (2.2) with ideal initial
conditions and no corrective impulses consti-
tutes the nominal, or reference, trajectory.
This solution is precomputed numerically and
stored for use during the flight, Because the
actual initial conditions are not ideal, inflight
corrections are required; the corrective accel-
eration at time ty produces a step change ck in
the velocity at tx. To first order in the varia-
tion 651 of the initial state from its nominal

value and to firstorder inthe velocity corrections

Ck, the variation 6xp in the state vector at the
nominal time of arrival atthe destinationis given

by
P * *
6§D = E CI’ MC
k =
p
- ¥
6>_(_D + (I> Mc cy (2.4)
k=1
6§D_ is the state vector variation that would exist

at the nominal time of arrival if no corrections
were applied, i is the 6-by-6 state transition

matrix,
* 2]
o, = =
I 3%,

For fixed tj and variable tj the elements of <I> ji
can be determined by numerical integration, as
shown in Ref, (1)., It is convenient for analytic
work to partition <I>ji into four 3-by-3 submatrices.

(2.5)

(2. 6)

Let the number of constraints to be satisfied
at the destination be m. In general, the constraints
are functions of the position and velocity (i.e., of
the state) of the vehicle relative to the target at
the actual time of arrival. In FTA guidance the
actual arrival time tA is the same as the nominal
arrival time tp; in VTA guidance the two arrival
times are usually not the same. The relative
state of the vehicle at tA is designated x ga.

XRA T XA T ETA
x A and x TA are, respectively, the state of the

vehicle and the state of the target at tA. The con-
straint equations may be written in the form

=0

2.7

; k=1, ..., , m (2.8)

%X Ra)
Since x pA is a six-component vector, the maxi-
mum number of linearly independent constraints
is six. The vector form of (2. 8) is

Yy = 9. (2.9
where 0y, is the m-component zero vector.

If the vehicle is on the reference trajectory,
all the constraints are satisfied at tp. On the
actual trajectory, satisfying a particular con-
straint Y requires that, to first order,

T
6’yk = Ek (iRA - ERD) =0 (2.10)

where hy is a six-component column vector of
partial derivatives,



h [ 4 ] (2.11)
-k ax t =ty

X grp is the relative state at tp. Note that éxp
is the state variation of the actual trajectory
from the reference trajectory at the nominal
time of arrival, while (x RA - x gp) is the dif-
ference between the relative state of the actual
trajectory at the actual time of arrival and the
relative state of the reference trajectory at the
nominal time of arrival. The difference in rel-
ative states can be determined as follows:

Xpa © &pt xp I dtp)
“&pp * Lpp Sp)
=xpp * 8%p * fgp Sty (2.12)
*Ra " Xgp T %p *Lgp ftp (.13

6tp is the change in time of arrival. f ppis
the time rate of change of the relative state at
tD-

6t =t

D (2. 14)

A~ 'p
frp *tp

The variational form of the i-th constraint equa-
tion can now be written as

T

-f1p (2.15)

sy, = 0=h (bxp * for 6tp)
p
- n [55 2 ng Me
k=1
+Ipn 6tD] (2. 16)

For FTA guidance 6tD is equal to zero, All
m constraints can be combined into a single
vector equation.

®YpraA ©

(2.17)

- * (2. 18)

In VTA guidance one of the constrants canbe
used as a "'stopping'' condition, thatis, as ameans

of determining &tp. Thisistrue because étpisnot
an independent variable but is actually dependent
on dxp. The constraint used for this determina-
tion must be one for which the scalar product of
hy and f gp is not equal to zero. Suppose that
Ym meets this requirement, Then, from (2. 16),

o “hy [—D Z‘I’Dk ]

D T
Ern £RD

(2.19)

The variational equation of the i-th constraint
(where i # m) becomes

T
_.1t|* Zfgrplnm
Sy, = h, I, -
i —1 6 h £
—-m —RD
P
RPN
. 6§_D + q’DkMEk =0
k=1

(2.20)

There are (m - 1) independent relations of this
type that must be satisfied, These are combined
in a vector equation as follows:

p
sk %* % b3
SYyra = L oxp + L Z P My = 0m -
k=1
(2.21)
where
T
hy
T
¢ * f h
L=| - 1, - —BD-m (2.22)
) 6 "7 T,
—RD -—-m
LT
-m -1

Equation (2. 21) indicates that m constraints at the
variable end point tp in VTA guidance are equiv-
alent to only (m - 1) constraints at the nominal end
point tD.

Constraint equations (2.17) and (2. 21) may be
generalized in the single equation

p
X

D Peete=o (2. 23)
k=1

where *15 i ﬁ* N
(P gpTa = HOp M (2. 24)
* N X %K X
P yra = Lep M (2.25)
(P)pra = Hoxp (2. 26)



* -
= Lox

(B)ypa = L8% (2.27)

n is the number of constraints at tp. The n-
dimensional vector P is known as the miss vector.

The preceding discussion applies to arbitrary
constraints, six or less in number, at the time of
arrival at the destination. In many guidance sys-
tems the only quantities constrained are the com-
ponents of the vehicle's final position relative to
the target. For such systems Eqgs. (2. 17) and
(2. 21) can be simplified considerably, as shown
below.

When final position relative to the target is
completely specified and there are no other con-
straints, the basic vector equation of the con-
straints is

= 0 (2.28)

For FTA guidance

5Ypra = OCp (2. 29)
o I PD ] 2. 30
H '[13 ! O3 (2.30)
* *
(Ppipra = Bpy (2.31)

so that the final guidance equations are given by

p
%X _
Ypra T Z Borex ¥ 8rp = 94
k=1

(2.32)
For VTA guidance, EmT can be taken as
h T =(0 0 1 0 0 0]
—1m
Then
| 1 0 0 0 0 0 T
B * _—~RD-m
L = =t LU
6 T
—fRD hrn
0 1 0 0 0 O
v -
1 0 -BDX 45 4 9
VRDz
= (2. 33)
v
0 1 -2BY 9 o o
VRDz J
v -
1 0 RDx
VRDz
* ¢
P yra * Bpk
v
o 1 -_RDy
VRpz (2. 34)

where VRDx,» VRDy: VRDz are the components
of the relative velocity vector vgp. With these
relations substituted into (2. 21), the VTA guid-
ance relations reduce to

p
X £ %y -
Syyra - L Z Bpgcgt L drp =0

k=1
(2.35)
%y
where L is the '"'reduced' L matrix.
v
1 0 _ RDx
VRDz
L= (2. 36)
v
o 1 - VR_Dz
RDz

The miss vector is simply ér|y” for position-
constrained FTA guidance while Tor position-
constrained VT A guidance it is the two-dimen-
sional vector (L érp ).

3. CRITICAL-PLANE COORDINATE SYSTEM

A special rotating coordinate system, called
the critical-plane coordinate system, is devel-
oped in this section for the purpose of simpli-
fying the analysis of VTA guidance,

, If Bpk is nonsingular, the vector wy is defined
y

w, = B !

¥ Dk YRD (. 1)

Consider the effect of premu

* 1
iplying v by L
and of premultiplying wy by ( 'png). RD

(3.2)

v = 0

DkBDk Yep 2 (3.3)

If the predicted position variation érp is par-
allel to vpp, L' érp~ in Eq. (2. 30) is equal to
92, and no corrections are required; thus the
component of any given érp~ that is parallel to
v RD has no effect on the VTA constraints. Sim-
ilarly, the component of the velocity correction
ck that is parallel to wik has no effect on the con-
straints, For every correction time ti there is
some direction in which a small velocity step
produces a position variation at tp that is par-
allel to v gp and hence has no effect on the con-
straints.

The physical interpretation of these observa-
tions is that the VTA constraints are satisfied if
the vehicle's actual position at the nominal time
of arrival is on the line through the nominal tar-
get point parallel to v gp. Position-constrained



FTA guidance is guidance to a specified point in The vector r is transformed from the ref-

position space at a specified time; position- erence coordinate system to the critical-plane
c.onstrained VTA guidance is guidance to a speci- coordinate system by the orthogonal trans-
fied line in position space at the same specified formation matrix X.
time. As indicated by Eq, (2.29), :
X
(61' ) = 0 (3. 4) % sk
~D'FTA ~ =3 rws [ n]- Xr = X y (3.6)
while for VTA, ¢ z
(6r ) = -v &t 3.5 - -
Iplvra = “Yrp “p 8.5) cos 6 sin 0 0

The direction of v gp is designated the non-
critical direction at tp, and the direction of wy
is designated the noncritical direction at tg. ~
The noncritical %irection varies with tx because

- sin 6 cos ¢

It
i

the elements of Bpy are functions of ty. As ty

approaches tp, Bpy approaches singularity; wy sin 8 sin ¢

approaches infinity in magnitude, and its direc- -

tion approaches that of viRp. Thus, stipulating

that v defines the noncritical direction at tp

is consistent with stipulating that wi defines the %1 =

noncritical direction at tx. wj is the noncritical X = X (3.8)

vector. The plane perpendicular to wy is called

The critical plane; only the components of veloc- The transformations for YR’D and w, are

ity correction in this plane can affect the con-

straints. v 0
The concept of the critical plane and the non- RDx

critical direction can be exploited by the formu- %o s

lation of a coordinate system in which two of the YrD ~| YRDy =X (XRD)W *Vap %D 0

axes lie in the critical plane and the third axis

is in the noncritical direction. This system is v

a rotating system due to the dependence of wy RDz

on tk. It will be referred to as the critical-

plane coordinate system. The subscript W will

be used to indicate that a vector or matrix is

expressed in the critical-plane system. .
Figure 1 illustrates the relation between the = Vepp| " cos fp sin ¢p (3.9)

critical-plane system axes, labeled ¢ n {, and

-cos § sin¢  cos ¢

|
|
|
|
cos §§ cos ¢ |sin @ 3.7
|
1
1
1

|
|
!
|
I
|
|
|
1

From the definition of an orthogonal matrix,

sin 6, sin ¢D

the axes x y z of the reference coordinate sys- cos ¢
tem. The £ and n axes are in the critical D
plane, the £ axis lying along the line of intersec- B _ o
tion of the critical plane with the reference plane; Wi 0
the  axis is in the noncritical direction, and the
n axis is so directed that ¢ n € form a right-
handed orthogonal triad. Angles 0 and ¢ serve w. = _ §‘( T (w.). = % T 0
to align £ n £ relative to x y z. The range of 8 =k wky “k ¥x'w WAk
is 0° to 360°; the range of ¢ is 0° to 180°,
N L Vkz _1 J
4
CRITICAL [ sin 6, sin 7
PLANE k Pk
= w - cos 6, sin
k ke 510 9 (3.10)
i cos ¢, ]
vrp and wy, without the underlining, are the mag-
REFERENCE PLANE nitudes of v Rp and wi, respectively. From these
£ equations the orientation angles can be found in
terms of the components of v gy and wi in the ref-
Fig. 1. Orientation of critical-plane coordinate system. erence coordinate system.




cos ¢p = fﬂi: (3.11)
v
tan 6, = _BDX (3.12)
RDy
w
cos ¢, —\%Z— (3.13)
k
w
tan 9, - (3. 14)
ey

The vector relationship of Eq. (2.30) can be
further simplified if it is expressed in the
critical-plang coordipate system. The matrices

involved are L' and Bpg. From (2. 31),
1 0 0
%1
L)y = (3.15)
0 1 0

* *

(Bp)w can be obtained from Bpy, the elements
of which are computed by numerical integration,
by a matrix transformation which can be derived
from Eqgs. (2.4), (2.5), and (2,6). If orjis
zero and there are no velocity corrections be-
tween t; and tj, then

br; = By by, (3.16)
% T _x %xT
Xj (6£j)W Bji Xi (6gi)w (3.17)
(6r ) % B, xT
ey (% B & Moy (3.18)
Thus,
s % ox x0T
(Bji)W Xj Bji Xi (3.19)
Correspondingly,
B w = Xp By X, |
DKW D Bpk Xk (3.20)

A *
The elements in the third column of Xp Bpyk Xk
can be derived from (3. 1).

*
(Bpyw Wiw = Wrplw (3.21)
0 0
i St $3 T
<XD BDk Xk 0 = 0 (3.22)
Yk VRD

For this equation to be valid for non-zero w_ | it
is necessary that the elements in the third célumn
of the triple scalar product be zero, zero, and
VRD/wk' Consequently,

H

r O"
* * %
(LN Bply, )y [ Q. (e

0]

S
ok

= Q (3.23)

K2k
*

where Qx is the 2-by-2 matrix consisting of the

elements in*theéirst*two rows and the first two

columns of Xp Bpk Xk 7T, and a | is the two-

dimensional vector consisting of the components

of c i along the £k and nk axes in the critical

plane. Then the vector equation of the constraints
is
p I,
Q. a +p=0 (3. 24)
Qe =Y :
k=1

Here miss vector p is the projection of of GED in
the critical plane. ™

Eq. (3. 24) brings out the fundamental ad-
vantage of the critical-plane concept. With this
concept the constraints of the VTA guidance
problem, which is physically a three-dimensional
problem, can be expressed mathematically in a
rotating two-dimensional coordinate system. The
concept is exploited in the following sections in
devising optimum midcourse correction strategies.

4. SINGLE-CORRECTION STRATEGY

If the number of constraints at tp is equal to
or less than three, a single velocity correction
normally is sufficient to satisfy these constraints.
In this section a method is developed for deter-
mining the time at which to apply a single cor -
rection such that the magnitude of the correction
is a minimum,

In position-constrained FTA guidance, for
which the number of constraints at tp is three,
the single correction ¢ prp, applied at time tc,
that satisfies the constraints, is, according to
Eq. (2.32),

-1

x
Bhe

o6r

_D' (4. 1)

S rTA

This equation can be solved as long as t. is such
that EDC is not singular.

In position-constrained VTA guidance, for
which there are only two constraints at tp, the
single correction c y7p satisfies the constraints
if a, its projection in [’:‘he critical plane corres-
ponding to tc, is given by

%
a =-Q.t e (4.2)
*
Time t¢ is chosen such that Q¢ is not singular,

The third component of ¢ yTA, the one in the non-
¢ritical direction at t¢, does not affect the VTA



constraints; obviously the magnitude of ¢ yp
minimized if the third component is zero, so that

a

CvTA (4.3)

0

For either FTA or VTA the magnitude of the
correction depends on it and the corresponding
miss vector. The object now is to determine the
tC which minimizes the magnitude of ¢ when
6rD or P is specified. Because it is simpler to
analyze, “the VTA case will be considered first.

Miss vector p can be expressed in target-
centered polar coordinates p and ¥ in the crit-
ical plane, p is the magnitude of the vector p;
Y is the angle between p and the ¢ paxis.

6§D cos Y
P = _l1=el (4. 4)
617D sin Y
1 [
¥ = tan! ( D_) (4. 5)
6.§D
The square of the magnitude of ¢ ypp 1s
. T
2 _ T _ T = -1 * -1
Cyras T & 270 Qg ) Qe
(4. 6)
Then
Cyra - P [cos ¥  sin Y]
T cos Y 1/2
SRR
C C
sin Y (4.7)

The magnitude of ¢ ya is a linear function of
the magnitude of p but varies nonlinearly with
Y and tc. The only property of p that affects
the optimum time of correction is the angle w
The optimum single-correction strategy is
predetermined (before the flight) by computing
and plotting a one-parameter family of curves,
the parameter being . The abscissa is the
time of correction (or, equivalently, one of the
anomalies), and the ordinate is the miss cor-
rectable per unit of velocity correction, i.e.,
the ratio of p to ¢ For each value of
there is generally a value of tc at which the
miss correctable is a maximum; this is the op-
timum tc for that Y. A cross-plot of optimum

tc versus Y is the basis for selecting the time of
correction to be used when some p has been in-
ferred from measurements made during the flight.

For FTA guidance, érp-~ is expressed in
terms of target- centerecTspherlcal coordinates,
The magnitude of c pA varies linearly with the
magnitude of ér p~ but nonlinearly with the two
angle coordinates. The optimum single correc-
tion strategy involves a two-parameter family of
curves, the parameters being the two angles.
Thus, the procedure is considerably more labor-
ious than the one-parameter procedure outlined
for VTA, However, the basic strategy is the
same; curves of miss correctable versus t¢ are
plotted for fixed values of the two angles, and the
values of t¢ corresponding to the maxima of the
individual curves are cross-plotted as functions
of the two angles to indicate the optimum correc-
tion time for any glven ér

The procedure is illustrated for VTA guidance
in Figs. 2 and 3, The reference trajectory is an
outbound (perifocus to apofocus) Hohmann trans-
fer with eccentricity of 0. 95, The trajectory of
the target is assumed to lie in the plane of the
reference trajectory, and the relative velocity of
the vehicle with respect to the target at tp is as-
sumed to be parallel to the velocity of the vehicle
relative to the attractive focus. Obviously, this
is a highly simplified case, the reference tra-
jectory being both two-dimensional and two-body;
nevertheless the guidance problem is still three-
dimensional, because out-of-plane and in-plane
components of the miss vector are both taken
into consideration. The simplicity of the case
reduces the amount of numerical computation,
yet adequately illustrates the fundamental prin-
ciples of single-correction strategy.

Physically in this trajectory the noncritical
direction at tp is parallel to the minor axis of
the reference ellipse. The critical plane at tp
is perpendicular to the reference trajectory
plane, and the line of nodes between the two
planes is the major axis of the reference ellipse,
Thus, when Y = 0°, p is parallel to the major
axis; when Y = 90°, p is perpendicular to the
reference plane. -

The range of Y is 0° to 360°. Since an in-
crease of 180° in Y between one miss vector and
another changes the sign of the required correc-
tion but not its magnitude, the miss correctable,
which is a ratio of magnitudes, is not affected,
and hence the computations can, in general, be
confined to the range ¢ = 0° to ¢ = 180°, In
this simple special case, there is also symmetry
about ¥ = 90°; that is, the miss correctable at
(90° + ¥) is equal to the miss correctable at
(90° - ) for the same tc, so that the actual
computations cover only the range 0° to 90° iny,

Fig. 2 is a plot of normalized miss correc-
table versus E(, the eccentric anomaly at the
time of correction. The range of E¢ for an out-
bound Hohmann transfer is 0° to 180°. The
normalized miss correctable is the miss cor-
rectable at the given Y and E divided by the
miss correctable at Y = 0°, E(‘: = 0°, Curves
are drawn for { = 0°, 5°, 15°, 30°, 60°, and
90°. The dotted curve in the figure is the locus
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Fig. 2. Normalized miss correctable versus eccentric anomaly
at time of correction.

of the points of maximum miss correctable for
each {,

Fig. 3 is a re-plot of the dotted curve of Fig.
2. Eccentric anomaly at optimum correction time
and maximum normalized miss correctable are
plotted as functions of y. The optimum correction
time curve is the only one that is needed to select
the time of correction in an optimum single-
correction VTA strategy.

5. MULTIPLE-CORRECTION STRATEGIES

Section 4 presents a method of selecting the
optimum time for a single midcourse correction
which completely nullifies the miss vector at the
destination. However, no consideration has yet
been given to the problem of multiple velocity
corrections, i.e., of determining whether sev-
eral partial corrections, made at different times,
may result in a total magnitude of velocity change
that is smaller than the magnitude of the single
correction already described,

It was shown above that the miss at the nom-
inal time of arrival at the destination can be des-
cribed by an n-dimensional vector where n is the
number of terminal constraints for FTA guidance
and one less than the number of terminal con-
straints for VTA guidance. In this section, it
will be shown that for a given set of injection er-
rors there is an optimum velocity correction

0.8
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PHASE ANGLE W ~ DEGREES

Fig 3. Maximum miss correctable and optimum eccentric
anomaly at time of correction versus phase angle V.

schedule consisting of at most n velocity correc-
tions which completely nulls out the miss due to
injection errors.

The following relation between injection errors
and velocity corrections was obtained in Section 2:

(56.1)

where p is the n dimensional vector representing
the miss that would occur without velocity cor-
rections, ¢ represents th% kth velocity correc-
tion applied at time ty and Py is the influence
matrix relating the kth velocity correction to the
miss.




It will be shown below that any velocity cor-
rection schedule containing more than n correc-
tions can be reduced to an n correction schedule
without increasing the total velocity change re-
quired. This result was obtained previously by
Neustadt(?) It then remains to find the best cor-
rection schedule from among all possible sche-
dules containing n or fewer corrections. This
is always possible in principle, and a fairly
simple graphical method for finding the optimum
schedule in the case when n is two will be de-
scribed in the next section.

In reducing the p correction schedule of Eq.
(5.1) to an n correction schedule, only (n + 1)
corrections will be considered at a time. There-
fore, let p_ denote the effect of the first (n + 1)
velocity cérrections on the miss.

n + 1

(5.2)

The effect of the (n + 1) corrections is to reduce
the miss from p to (P -p ).

It will be shown that there is an n correction
schedule which uses no more total velocity
change (probably less) than the (n + 1) correc-
tions of Eq. (5.2) and results in the same cor-
rective effect p,. This reduces the summation
in Eq. (5.1) to {p - 1) terms. Applying this re-
duction (p - n) times results in an n correction
schedule which is at least as economical as the
original p correction schedule.

To carry out the reduction of the Eq. (5-2)
schedule to n corrections, let

_ 1 s
up ° oo Prlk (5.3)
K
Then
nt+1
P 2 °x Yk (5.4)
k=1

Since uy is an n-dimensional vector, the vectors
Uy, «.., Up 4+ 1 are linearly dependent, and
there are scalars A3, ..., Ap 4+ 1 such that

(5.5)

Let

Z Ay (5. 6)

k=1

If A is negative, the signs of all the Ay's are
changed so that

A> 0 (5.17)
Now, let
A
a, = = (5.8)
K

and choose r so that a,. is the maximum of the
akg's. Thenap >apfork=1,..., n+1and
ar >0 since X > 0. Multiplying Eq. (5.5) by
1/ap and adding the result to Eq. (5. 4) yields

nt 1
=1
with
A c
_ Tk k
e {ar-ak} (5. 10)
r r

By the last equality abovepy > Oand pp = 0. Fi-
nally, by Egs. (5.3) and (5. 9) it follows that
nt+1
S 1
Py © - Z PLcy (5.11)
k=1
with
' By
Sk <) Sk (5.12)

Eq. (5.11) represents an n correction schedule
since c ' is zero. The total velocity change re-
quired by the new correction schedule is

n+1 n+1

1 T

¢ -Z “x _E Py
k=1 k=1
n+1

"
(e}
-
L}
*smly

(5.13)

Since A > 0, c' is less than or equalto c 1 +...
+ cn+ 1, and thus the new correction schedule
is at least as economical as the old schedule.



6. MULTIPLE-CORRECTION STRATEGY FOR
POSITION-CONSTRAINED VTA GUIDANCE

The multiple correction case for position-
constrained VTA guidance is studied in this sec-
tion. It was shown in the preceding section that
the optimum velocity correction schedule for
position-constrained VTA guidance need never
contain more than two corrections (in some cases
it consists of only one correction). This section
outlines a geometric constiruction for determining
the optimum set of velocity corrections needed to
null out the miss due to given injection errors.

The analysis in this section makes extensive
use of the equation of a line segment joining two
given vectors in the target critical plane. Thus,
in Fig. 4, the vectors a and b define a line seg-
ment AB, If the head of the vector h lies on__
this line segment and A denotes the ratio of HB
to AB, then

h =b+ Ala-b)=2xa+ (1-1)b

(6.

o]

Fig. 4. Vector relation in the critica! plane.

As the point H moves along the line segment, A
ranges from zero_to one. Thus the equation of
the line segment AB is
h=2xa+ (1-XMb 0< <1 (6.2)

Suppose that the miss vector p due to injec-
tion errors is given and it is desired to find the
optimum velocity correction schedule which
nulls out this miss. Since the use of two cor-
rections may result in a saving in total velocity
change, the total corrective effect will be written
as the sum of two components P, and Po, to be
produced by separate velocity corrections.
Thus, with

&

Ek=PkE=CkB}_<’k:l'2 (6.3)
Eq. (5.1) becomes

Pty TP (6.4)
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Fig. 5. Construction for optimum double velocity correction.

Fig. 5 illustrates this vector sum. The solid
curve in the figure is a polar plot of maximum
miss correctable as a function of{/; that is, it
represents the same type of information as that
shown in the upper half of Fig. 3.

In order to obtain the minimum total velocity
change, corrective effects p1 and pg should each
be obtained by use of the single-correction stra-
tegy of Section 4; i.e., the correction which pro-
duces pj is made at the time for which the miss
correctable is maximum for the Y corresponding
to pg. If A and B are the points where lines
drawn from the origin along vectors p1 and P9
intersect the solid curve, then, since the solid
curve is the locus of the maximum corrective
effect of a unit velocity change and since uy is
defined in Eq. (5.3) as the corrective effect of a
unit velocity change, ujy and ug are the vectors
from the origin to A and B, respectively. The
magnitude of the correction that produces Pﬁk is
simply the ratio of the magnitude of py to the
magnitude of uy.

c, = it ;
K k

(6. 5)

Fig. 5 illustrates this ratio; the equation follows
directly from Eq. (6.3). The sum of the mag-
nitudes of the two constituents of the multiple cor-~
rection is

c =cy tc

127 %17 % (6.6)
Since p is given, minimizing c 5 is the same

as maximizing the ratiop/cya. T*us ratio re-

presents the miss correctable with unit total

velocity change when the required corrective ef-

fect -P is divided into components parallel to

Py and Py

__p - .8.1 + gz
€12 €12
= Au, + (1 - A)u 6.7
where =1 ‘:2 ( )
c
1
cl+c2




Thus 0 < X < 1 and the head of the vector-p/cqq
must lie on the line segment AB. However-p/cig
also lies on the line L drawn from the origin
along the vector-p, and therefore p/cy9 must be
the vector from_the origin to the point %) at the
intersection of AB and the line L. _Then p /cip
is the length of the line segment OD. More gen-
erally, this argument shows that the line seg-
ment AB is the locus of miss vectors which can
be corrected with unit total velocity change after
being split up into components parallel to uy and
Ug.

To maximize the ratio p/c12, the points A
and B must be moved around the solid curve un-
til the intersection of AB and L is farthest from
the origin, This occurs when A and B are posi-
tioned so that the line segment AB meets the
solid cur_g,g:__at points of tangency, as the line
segment AB does in Fig. 5.

If the line L intersects the solid curve at a
point where the solid curve is convex as in Fig.
6 and one iries io represent -p as the sum of two
partial corrections, one_finds that the intersec-
tion of the line segment AB with L is always
closer to the origin than the intersection of L
with the solid curve and no double correction is
as economical as the best single correction.

Fig. 6. Example of a vector-p for which o single correction
is optimum.

Finally, the locus S of vectors-p which are
obtained with an optimum single or double veloc-
ity correction with unit total velocity change is
made up of the convex parts of the curve for op-
timum single corrections plus the tangent line
segments as illustrated in Fig. 7.

DOUBLE CORRECTION
OPTIMUM IN THESE
REGIONS

-SINGLE
CORRECTION
OPTIMUM
IN THESE
REGIONS

Fig. 7. Plot of corrective effect obtained with optimum unit
double or single velocity correction.
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The curve S is the basis for calculating op-
timum velocity correction schedules. Suppose
that it is desired to find the optimum correction
schedule which produces the corrective effect

T If the line L from the origin along the vector
- p intersects the curve S along a curved por-
tion, - p should be obtained by means of the
best single correction. However if the line L
from the origin along the vector-p intersects the
curve S along a straight line portion, - p should
be split up into components parallel to the vec~
tors u1 and ug from the origin to the ends of the
straight line portion. This operation involves
solving a pair of simultaneous linear equations.
Thus, scalars a and p must be found such that

-p = (6.7

where - p, uy and Uy are given. Writing this
vector equation out in components results in two
scalar equations which may be solved for a and
provided uy and u g are not collinear. ui and usg
cannot be collinear since they extend from the
origin to opposite ends of a line segment. Once
a and f have been found, the optimum single cor-
rection technique of Section 4 may be applied to
the vectors auj and pug. In this case the ratio
of the total velocity change required for the opti-
mum double correction to that required for the
optimum single correction is_the ratio of the
lengths of the line segments OE and OD in Fig. 7.

Figs. 8 and 9 are polar plots of the corrective
effect produced by the best single velocity cor-
rection as a function of direction in the target
critical plane for Hohmann transfers of various
eccentricities. The components of corrective
effect in the trajectory plane and perpendicular
to the trajectory plane were plotted to different
scales in order to make the curves more sym-
metrical. For the outbound transfers illustrated
in Fig. 8, the curves become more concave as
the eccentricity increases. For the 0. 95 eccen-
tricity outbound transfer, the curve indicates that,
in the directions which favor a double correction
the most, the best single correction uses about
fifty percent more total velocity change than the
best double correction. The curves for inbound
Hohmann transfers in Fig. 9 are always convex,
indicating that single corrections are always
better than double corrections on inbound trans-
fers of this type.

In more precise terms the locus of - p vec-
tors which are obtained with an optimum single
or double velocity correction with total velocity
change less than or equal to unity is the convex
hull of the set of - p vectors which may be ob-
tained with optimum single corrections with total
velocity change less than or equal to unity. A
convex set is a set having the property that any
line segment joining two points in the set lies
entirely within the set. The convex hull of a set
is the smallest convex set containing the original
set. The operation of drawing in tangent line
segments described above thus corresponds to
constructing the convex hull of the set of - p
vectors which may be obtained with optimum
single corrections with total velocity change less
than or equal to unity.

+
o u, Bu,
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Fig. 8. Polar plot of normalized miss correctable versus
phase angle V.
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INBOUND
HOHMANN TRANSFER
e =0.25, 0.95

DISTORTED COORDINATES 270

Fig. 9. Polar plot of normalized miss correctable versus
phase angle W.

NOMENCLATURE

General

An asterisk over a capital letter indicates a
matrix,

An underlined lower-case letter indicates a
column vector. A vector symbol without the

underlining indicates the magnitude of the vector.

A single dot over a vector symbol indicates
the first derivative with respect to time in an
inertially non-rotating coordinate system.

Square brackets around a partial derivative
involving vector quantities indicates a column
vector or matrix consisting of the partial deriv-
atives of the components of the vectors.

English Symbols

ay ratio of )\k to the magnitude of C

a, maximum of the a,'s

A,

ji

B..

ji

C submatrices of the state transition

ji matrix

D.,

ji

c single velocity correction which
satisfies the constr .ints

Sy k-th of a series of velocity correc-
tions which, taken together, satisfy
the constraints

1 1
c sum of magnitudes of S vectors
1

Cy k-th velocity correction in revised
schedule

Ciq sum of magnitudes of velocity cor-
rections in a two-correction sched-
ule.

f rate of change of the state vector
with time in the absence of any con-
trol action

FTA fixed-time-of-arrival

hk six-dimensional vector of the par-
tial derivatives of constraint i
with respect to the components of
% p,

*

H m-by-6 matrix relating the con-
straints to 6£D in FTA guidance

fk k-by-k identity matrix

3

L (m - 1)-by-6 matrix relating the
constraints to 6)£D in VTA guidance

k!

L 2-by-3 matrix relating position
constraints to 6£D in VTA guidance

m number of contraints at actual time
of arrival

&

M 6-by-3 compatibility matrix

n number of constraints at nominal

time of arrival

k-component zero vector



O¥*

k k-by-k zero matrix A

P number of velocity corrections !
) * ’
Pk influence matrix relating the k-th Xk
velocity correction to the miss -
vector C’I‘;
b3 ) Ji
Qk 2-by-2 matrix indicating the effect "
on the target miss vector of a veloc- k
ity correction at tk P
r position vector
p
S locus of p vectors obtained from op- —2
timum strategy with unit total veloc-
ity change v
t time
Uy corrective effect of a unit velocity §
- correction in the direction of ¢ n
v velocity vector e
VRD magnitude of YRD .
Subscripts
VTA variable-time-of-arrival A
Wy noncritical vector at time tk
Wy magnitude of Wy c
tate vector
f state D
X transformation matrix from refer-
ence coordinate system to critical-
plane coordinate system FTA
X
. I
y axes of reference coordinate sys-
tem
z i
i
Greek Symbols K
Sy component of velocity correction
in the critical plane k
a weighting factor relating u, to - p R
B weighting factor relating u,to-p
T
Yk k-th constraint
VTA
Y constraint vector
6 first variation w
BtD change in time of arrival at des-
tination X
o(t - t,) Dirac delta function at time t
k k y
A sum of (n + 1) Ay's z
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scalar quantity limited to the range
zero to one

scalar coefficient associated with
u

=k

6-by-6 state transition matrix
weighting factor relating u, to Pa

miss vector

corrective effect of first (n + 1)
velocity corrections

angle between miss vector and £p
axis

coordinate axes in the critical plane

coordinate axis in the noncritical
direction

pertaining to actual time of arrival
at destination

pertaining to time of a single veloc-
ity correction

pertaining to nominal time of arrival
at destination

pertaining to fixed-time-of-arrival
guidance

pertaining to nominal time of in-
jection

pertaining to time 'ci
pertaining to time ‘cj
pertaining to time 1:k
dummy index

pertaining to the vehicle's condition
relative to the target

pertaining to the target

pertaining to variable-time-of-
arrival guidance

pertaining to critical-plane coordinate
system

pertaining to vector components
along the axes of the reference co-
ordinate system




3

n pertaining to vector components
along the axes of the critical-plane

¢ coordinate system

Superscripts

T transpose of a vector or matrix

- pertaining to conditions that would
exist if no corrections were applied
-1 inverse of a matrix
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