21,119 research outputs found
Direct Numerical Simulation of 3D Salt Fingers: From Secondary Instability to Chaotic Convection
The amplification and equilibration of three-dimensional salt fingers in
unbounded uniform vertical gradients of temperature and salinity is modeled
with a Direct Numerical Simulation in a triply periodic computational domain. A
fluid dynamics video of the simulation shows that the secondary instability of
the fastest growing square-planform finger mode is a combination of the
well-known vertical shear instability of two-dimensional fingers [Holyer, 1984]
and a new horizontal shear mode.Comment: APS DFD Gallery of Fluid Motion 200
Dual Instantons
We show how to map the Belavin-Polyakov instantons of the O(3)-nonlinear
model to a dual theory where they then appear as nontopological
solitons. They are stationary points of the Euclidean action in the dual
theory, and moreover, the dual action and the O(3)-nonlinear model
action agree on shell.Comment: 13 page
ON THE GEOMETRY OF THE X-RAY EMITTING REGION IN SEYFERT GALAXIES
For the first time, detailed radiative transfer calculations of Comptonized
X-ray and gamma-ray radiation in a hot pair plasma above a cold accretion disk
are performed using two independent codes and methods. The simulations include
both energy and pair balance as well as reprocessing of the X- and gamma-rays
by the cold disk. We study both plane-parallel coronae as well as active
dissipation regions having shapes of hemispheres and pill boxes located on the
disk surface. It is shown, contrary to earlier claims, that plane-parallel
coronae in pair balance have difficulties in selfconsistently reproducing the
ranges of 2-20 keV spectral slopes, high energy cutoffs, and compactnesses
inferred from observations of type 1 Seyfert galaxies. Instead, the
observations are consistent with the X-rays coming from a number of individual
active regions located on the surface of the disk.
A number of effects such as anisotropic Compton scattering, the reflection
hump, feedback to the soft photon source by reprocessing, and an active region
in pair equilibrium all conspire to produce the observed ranges of X-ray
slopes, high energy cutoffs, and compactnesses. The spread in spectral X-ray
slopes can be due to a spread in the properties of the active regions such as
their compactnesses and their elevations above the disk surface. Simplified
models invoking isotropic Comptonization in spherical clouds are no longer
sufficient when interpreting the data.Comment: 9 pages, 3 postscript figures, figures can be obtained from the
authors via e-mail: [email protected]
Empirical modeling of the quiet time nightside magnetosphere
Empirical modeling of plasma pressure and magnetic field for the quiet time nightside magnetosphere is investigated. Two models are constructed for this study. One model, referred to here as T89R, is basically the magnetic field model of Tsyganenko (1989) but is modified by the addition of an inner eastward ring current at a radial distance of âŒ3 RE as suggested by observation. The other is a combination of the T89R model and the long version of the magnetic field model of Tsyganenko (1987) such that the former dominates the magnetic field in the inner magnetosphere, whereas the latter prevails in the distant tail. The distribution of plasma pressure, which is required to balance the magnetic force for each of these two field models, is computed along the tail axis in the midnight meridian. The occurrence of pressure anisotropy in the inner magnetospheric region is also taken into account by determining an empirical fit to the observed plasma pressure anisotropy. This effort is the first attempt to obtain the plasma pressure distribution in force equilibrium with magnetic stresses from an empirical field model with the inclusion of pressure anisotropy. The inclusion of pressure anisotropy alters the plasma pressure by as much as a factor of âŒ3 in the inner magnetosphere. The deduced plasma pressure profile along the tail axis is found to be in good agreement with the observed quiet time plasma pressure for geocentric distances between âŒ2 and âŒ35 RE
A preliminary quarantine analysis of a possible Mariner Venus 1972 mission
Spacecraft contamination preliminary quarantine analysis for possible 1972 Mariner Venus prob
Electronic dummy for acoustical testing
Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal
Optimized production of large Bose Einstein Condensates
We suggest different simple schemes to efficiently load and evaporate a
''dimple'' crossed dipolar trap. The collisional processes between atoms which
are trapped in a reservoir load in a non adiabatic way the dimple. The
reservoir trap can be provided either by a dark SPOT Magneto Optical Trap, the
(aberrated) laser beam itself or by a quadrupolar or quadratic magnetic trap.
Optimal parameters for the dimple are derived from thermodynamical equations
and from loading time, including possible inelastic and Majorana losses. We
suggest to load at relatively high temperature a tight optical trap. Simple
evaporative cooling equations, taking into account gravity, the possible
occurrence of hydrodynamical regime, Feshbach resonance processes and three
body recombination events are given. To have an efficient evaporation the
elastic collisional rate (in s) is found to be on the order of the
trapping frequency and lower than one hundred times the temperature in
micro-Kelvin. Bose Einstein condensates with more than atoms should be
obtained in much less than one second starting from an usual MOT setup.Comment: 14 page
Kinetics of electron-positron pair plasmas using an adaptive Monte Carlo method
A new algorithm for implementing the adaptive Monte Carlo method is given. It
is used to solve the relativistic Boltzmann equations that describe the time
evolution of a nonequilibrium electron-positron pair plasma containing
high-energy photons and pairs. The collision kernels for the photons as well as
pairs are constructed for Compton scattering, pair annihilation and creation,
bremsstrahlung, and Bhabha & Moller scattering. For a homogeneous and isotropic
plasma, analytical equilibrium solutions are obtained in terms of the initial
conditions. For two non-equilibrium models, the time evolution of the photon
and pair spectra is determined using the new method. The asymptotic numerical
solutions are found to be in a good agreement with the analytical equilibrium
states. Astrophysical applications of this scheme are discussed.Comment: 43 pages, 7 postscript figures, to appear in the Astrophysical
Journa
The Poincare' coset models ISO(d-1,1)/R^n and T-duality
We generalize a family of Lagrangians with values in the Poincar\'e group
ISO(d-1,1), which contain the description of spinning strings in flat (d-1)+1
dimensions, by including symmetric terms in the world-sheet coordinates. Then,
by promoting a subgroup H=R^n, n less than or equal to d, which acts
invariantly from the left on the element of ISO(d-1,1), to a gauge symmetry of
the action, we obtain a family of sigma-models. They describe bosonic strings
moving in (generally) curved, and in some cases degenerate, space-times with an
axion field. Further, the space-times of the effective theory admit in general
T-dual geometries. We give explicit results for two non degenerate cases.Comment: LaTeX, 24 pages, no figure
- âŠ