52 research outputs found

    HST FUV spectroscopy of the short orbital period recurrent nova CI Aql: Implications for white dwarf mass evolution

    Get PDF
    An HST COS Far UV spectrum (1170 A to 1800 A) was obtained for the short orbital period recurrent novae (T Pyxidis subclass), CI Aquilae. CI Aql is the only classical CV known to have two eclipses of sensible depth per orbit cycle and also have pre- and post-outburst light curves that are steady enough to allow estimates of mass and orbital period changes. Our FUV spectral analysis with model accretion disks and NLTE high gravity photospheres, together with the Gaia parallax, reveal CI Aql's FUV light is dominated by an optically thick accretion disk with an accretion rate of the order of 4×1084\times 10^{-8} M/yrM_{\odot}/yr. Its database of light curves, radial velocity curves, and eclipse timings is among the best for any CV. Its orbit period (PP), dP/dtdP/dt, and reference time are re-derived via simultaneous analysis of the three data types, giving a dimensionless post-outburst dP/dtdP/dt of 2.49±0.95×1010-2.49\pm 0.95\times 10^{-10}. Lack of information on loss of orbital to rotational angular momentum leads to some uncertainty in the translation of dP/dtdP/dt to white dwarf mass change rate, dM1/dtdM_1/dt, but within the modest range of +4.8×108+4.8\times 10^{-8} to +7.8×108+7.8\times 10^{-8} M/yrM_{\odot} /yr. The estimated white dwarf mass change through outburst for CI Aql, based on simple differencing of its pre- and post outburst orbit period, is unchanged from the previously published +5.3×106M+5.3 \times 10^{-6} M_{\odot}. At the WD's estimated mass increase rate, it will terminate as a Type Ia supernova within 10 million years

    A Changing Wind Collision

    Get PDF
    We report on the first detection of a global change in the X-ray emitting properties of a wind–wind collision, thanks to XMM-Newton observations of the massive Small Magellenic Cloud (SMC) system HD 5980. While its light curve had remained unchanged between 2000 and 2005, the X-ray flux has now increased by a factor of ~2.5, and slightly hardened. The new observations also extend the observational coverage over the entire orbit, pinpointing the light-curve shape. It has not varied much despite the large overall brightening, and a tight correlation of fluxes with orbital separation is found without any hysteresis effect. Moreover, the absence of eclipses and of absorption effects related to orientation suggests a large size for the X-ray emitting region. Simple analytical models of the wind–wind collision, considering the varying wind properties of the eruptive component in HD 5980, are able to reproduce the recent hardening and the flux-separation relationship, at least qualitatively, but they predict a hardening at apastron and little change in mean flux, contrary to observations. The brightness change could then possibly be related to a recently theorized phenomenon linked to the varying strength of thin-shell instabilities in shocked wind regions

    SDSS-IV/MaNGA: Spectrophotometric Calibration Technique

    Get PDF
    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA), one of three core programs in the Sloan Digital Sky Survey-IV, is an integral-field spectroscopic survey of roughly 10,000 nearby galaxies. It employs dithered observations using 17 hexagonal bundles of 2'' fibers to obtain resolved spectroscopy over a wide wavelength range of 3600–10300 Å. To map the internal variations within each galaxy, we need to perform accurate spectral surface photometry, which is to calibrate the specific intensity at every spatial location sampled by each individual aperture element of the integral field unit. The calibration must correct only for the flux loss due to atmospheric throughput and the instrument response, but not for losses due to the finite geometry of the fiber aperture. This requires the use of standard star measurements to strictly separate these two flux loss factors (throughput versus geometry), a difficult challenge with standard single-fiber spectroscopy techniques due to various practical limitations. Therefore, we developed a technique for spectral surface photometry using multiple small fiber-bundles targeting standard stars simultaneously with galaxy observations. We discuss the principles of our approach and how they compare to previous efforts, and we demonstrate the precision and accuracy achieved. MaNGA's relative calibration between the wavelengths of Hα and Hβ has an rms of 1.7%, while that between [N ii] λ6583 and [O ii] λ3727 has an rms of 4.7%. Using extinction-corrected star formation rates and gas-phase metallicities as an illustration, this level of precision guarantees that flux calibration errors will be sub-dominant when estimating these quantities. The absolute calibration is better than 5% for more than 89% of MaNGA's wavelength range

    The Nature and Orbit of the Ophiuchus Stream

    Get PDF
    The Ophiuchus stream is a recently discovered stellar tidal stream in the Milky Way. We present high-quality spectroscopic data for 14 stream member stars obtained using the Keck and MMT telescopes. We confirm the stream as a fast moving (vlos290v_{los}\sim290 km s1^{-1}), kinematically cold group (σvlos1\sigma_{v_{los}}\lesssim1 km s1^{-1}) of α\alpha-enhanced and metal-poor stars ([α/Fe]0.4{\rm [\alpha/Fe]\sim0.4} dex, [Fe/H]2.0{\rm [Fe/H]\sim-2.0} dex). Using a probabilistic technique, we model the stream simultaneously in line-of-sight velocity, color-magnitude, coordinate, and proper motion space, and so determine its distribution in 6D phase-space. We find that that the stream extends in distance from 7.5 to 9 kpc from the Sun; it is 50 times longer than wide, merely appearing highly foreshortened in projection. The analysis of the stellar population contained in the stream suggests that it is 12\sim12 Gyr old, and that its initial stellar mass was 2×104\sim2\times10^4 MM_{\odot} (or at least 7×103\gtrsim7\times10^3 MM_{\odot}). Assuming a fiducial Milky Way potential, we fit an orbit to the stream which matches the observed phase-space distribution, except for some tension in the proper motions: the stream has an orbital period of 350\sim350 Myr, and is on a fairly eccentric orbit (e0.66e\sim0.66) with a pericenter of 3.5\sim3.5 kpc and an apocenter of 17\sim17 kpc. The phase-space structure and stellar population of the stream show that its progenitor must have been a globular cluster that was disrupted only 240\sim240 Myr ago. We do not detect any significant overdensity of stars along the stream that would indicate the presence of a progenitor, and conclude that the stream is all that is left of the progenitor.Comment: ApJ in pres
    corecore