18 research outputs found

    Decoupled electrochemical water splitting: from fundamentals to applications

    Get PDF
    Electrolytic water splitting to generate hydrogen and oxygen is one of the most promising ways in which to harness intermittent renewable power sources and store the energy these provide as a clean‐burning and sustainable fuel. In recent years, this has led to an explosion in reports on electrochemical water splitting, most of them focused on improving the efficiency of the electrochemical reactions themselves. However, efficient generation of hydrogen and oxygen is of little use if these products cannot be kept separate and the community is now coming to realize that there are considerable challenges associated with maintaining adequate separation between H2 and O2 during electrolysis driven by intermittent renewable sources. Decoupled electrolysis (whereby oxygen production occurs with reduction of a suitable mediator and hydrogen production is then paired with the reoxidation of this mediator) offers a solution to many of these challenges by allowing O2 and H2 to be produced at different times, at different rates, and even in completely different electrochemical cells. In this review, an overview of recent progress in the field of decoupled electrolysis for water splitting is given and the potential that this approach has for enabling a range of other sustainable chemical processes is explored

    Electrochemical reduction of nitrobenzene via redox-mediated chronoamperometry

    Get PDF
    Anilines are important feedstocks for pharmaceuticals, dyes, and other materials, but traditional approaches to their syntheses usually lack selectivity and environmental sustainability. Here, we describe the selective reduction of nitrobenzene to aniline under mild conditions, using water as the ultimate source of the required protons and electrons. We describe the electrochemical cell assembly, and detail steps for electrochemical reduction followed by organic extraction and analysis of the extracts using NMR

    Anion‐π catalysis enabled by the mechanical bond

    Get PDF
    We report a series of rotaxane-based anion–π catalysts in which the mechanical bond between a bipyridine macrocycle and an axle containing an NDI unit is intrinsic to the activity observed, including a [3]rotaxane that catalyses an otherwise disfavoured Michael addition in >60 fold selectivity over a competing decarboxylation pathway that dominates under BrĂžnsted base conditions. The results are rationalized by detailed experimental investigations, electrochemical and computational analysis

    Host-guest induced electron transfer triggers radical-cation catalysis

    Get PDF
    Modifying the reactivity of substrates by encapsulation is a fundamental principle of capsule catalysis. Here we show an alternative strategy, wherein catalytic activation of otherwise inactive quinone “co-factors” by a simple Pd2L4 capsule pro-motes a range of bulk-phase, radical-cation cycloadditions. Solution electron transfer experiments and cyclic voltammetry show the cage anodically shifts the redox potential of the encapsulated quinone by a significant 1 V. Moreover, the capsule also protects the reduced semiquinone from protonation, thus transforming the role of quinones from stoichiometric oxidants into catalytic single electron acceptors. We envisage that the host-guest induced release of an “electron hole” will translate to various forms of non-encapsulated catalysis that involve other difficult to handle, highly reactive species

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    High yield and selective electrocatalytic reduction of nitroarenes to anilines using redox mediators

    Get PDF
    Anilines are major commodity chemicals used extensively in the production of pharmaceuticals, dyes, and polymers. However, the typical methods for synthesizing anilines suffer from poor environmental sustainability. Here, we report an electrocatalytic route for the production of anilines that works in aqueous solution at room temperature and pressure, where the electrons and protons required to reduce the nitrobenzene precursors are obtained from water. Excellent selectivities are obtained for a range of anilines, including species with ortho-iodides that are very challenging to obtain by other methods. Our approach relies on the use of a polyoxometalate redox mediator that shuts off the direct electro-reduction of the nitrobenzene at the electrode surface and thus prevents unproductive side reactions. Given the scale and current environmental impact of global aniline production, this electrochemical route holds promise for the development of more sustainable processes for the production of these vital chemical feedstocks

    Highly Selective Electrocatalytic Reduction of Substituted Nitrobenzenes to Their Aniline Derivatives Using a Polyoxometalate Redox Mediator

    No full text
    Anilines and substituted anilines are used on the multi-ton scale for producing polymers, pharmaceuticals, dyes, and other important compounds. Typically, these anilines are produced from their corresponding nitrobenzene precursors by reaction with hydrogen at high temperatures. However, this route suffers from a number of drawbacks, including the requirement to handle hydrogen gas, rather harsh reaction conditions that lead to a lack of selectivity and/or toleration of certain functional groups, and questionable environmental sustainability. In light of this, routes to the reduction of nitrobenzenes to their aniline derivatives that operate at room temperature, in aqueous solvent, and without the requirement to use harsh process conditions, hydrogen gas, or sacrificial reagents could be of tremendous benefit. Herein, we report on a highly selective electrocatalytic route for the reduction of nitrobenzenes to their corresponding anilines that works in aqueous solution at room temperature and which does not require the use of hydrogen gas or sacrificial reagents. The method uses a polyoxometalate redox mediator, which reversibly accepts electrons from the cathode and reacts with the nitrobenzenes in solution to reduce them to the corresponding anilines. A variety of substituted nitroarenes are explored as substrates, including those with potentially competing reducible groups and substrates that are difficult to reduce selectively by other means. In all cases, the selectivity for the redox-mediated route is higher than that for the direct reduction of the nitroarene substrates at the electrode, suggesting that redox-mediated electrochemical nitroarene reduction is a promising avenue for the more sustainable synthesis of substituted anilines
    corecore