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ABSTRACT: Modifying the reactivity of substrates by encapsu-

lation is a fundamental principle of capsule catalysis. Here we show 

an alternative strategy, wherein catalytic activation of otherwise in-

active quinone “co-factors” by a simple Pd2L4 capsule promotes a 

range of bulk-phase, radical-cation cycloadditions. Solution elec-

tron transfer experiments and cyclic voltammetry show the cage 

anodically shifts the redox potential of the encapsulated quinone by 

a significant 1 V. Moreover, the capsule also protects the reduced 

semiquinone from protonation, thus transforming the role of qui-

nones from stoichiometric oxidants into catalytic single electron 

acceptors. We envisage that the host-guest induced release of an 

“electron hole” will translate to various forms of non-encapsulated 

catalysis that involve other difficult to handle, highly reactive spe-

cies. 

The modulation of reactivity using transition state-stabilizing in-

teractions is the dominant mechanism that enzymes employ to 

achieve incredible rate enhancements.[1] Their remarkable activity 

has inspired a generation of scientists to create artificial mimics us-

ing hollow, substrate-binding constructs.[2] Enzymes, however, do 

not only change the reactivity of bound substrates but also other 

species, such as co-factors, which are essential for catalytic activ-

ity. The use of encapsulated transition metal catalysts,[3] as exem-

plified by Toste, Raymond and Bergman,[4] can be viewed as a form 

of biomimetic holocatalysis. Whilst common in nature, manipula-

tion of redox properties using synthetic hosts is much less com-

mon,[5] even less so for catalytic applications.[6] Herein we show 

that the binding of several commercially available quinones by a 

simple coordination cage generates catalytic activity not inherent 

in either component.  

We have previously shown that cages C-1 and C-2 (Scheme 1) 

bind and activate quinones,[7a] facilitating Diels–Alder (DA) catal-

ysis.[2h] As activation results from a lowered LUMO,[7b] we ex-

pected that encapsulation would increase the quinone redox poten-

tial, triggering electron transfer (ET) from a free substrate and thus 

generating bulk-phase radical-cation reactivity (Scheme 1a,b). This 

mode of cage catalysis complements usual forms that involve sub-

strate encapsulation;[2] it allows a wider, size-independent reactant 

scope and avoids product inhibition[2b,c]  yet cannot easily facilitate 

the types of selectivity attainable using confinement effects. We 

were also expectant that the cage could transform the intrinsic role 

of quinones from stoichiometric 2(H+ + e−) oxidants to catalytic 

one-electron acceptors because the poly-cationic shell should “pro-

tect” the semiquinone radical-anion from protonation. This funda-

mental switch in reactivity would make it distinct from small mol-

ecule non-covalent activation of o-quinones.[8]    

 

Scheme 1. Supramolecular redox catalysis. (a) Cage and “co-

factor” are separately inactive but (b) encapsulation switches on 

electron transfer (ET) and radical-cation reactivity. (c) Chemical 

structure of cages C-1 and C-2 used in this study. 



 

Initial catalytic studies focused on the electron rich alkene trans-

anethole, a substrate that Bauld has shown undergoes radical cation 

cyclizations induced by the single electron oxidant, the Ledwith-

Weitz salt.[9a,b] Selecting fluoranil, Q-1, because it is both a mild 

oxidant and a guest for C-1 (Ka = 120 M−1; see Supporting Infor-

mation), we found that neither species separately show any reactiv-

ity towards this substrate. However, combining C-1 and Q-1 (5 

mol% each) gave rapid formation (< 1 h) of the [2+2] homodimer 

1, albeit in only 34% yield (Scheme 2b) alongside unreacted start-

ing material. Yoon has suggested that the homodimer undergoes 

facile retrocycloaddition,[10a] explaining this poor conversion. 

Pleasingly, the [4+2] cycloaddition reaction of trans-anethole and 

cyclopentadiene showed full consumption of the limiting reactant 

giving cycloadduct 2 in an excellent 99% yield (Scheme 2a; Table 

1, entry 1). The diastereoselectivity of product 2 is the same within 

error of that observed by Bauld (83:17 vs 85:15)[9c] suggesting a 

common radical cation reaction manifold.  

 

Scheme 2. Cage-quinone catalyzed [4+2] and [2+2] cycloaddition 

reactions. Yields determined by 1H NMR spectroscopy. a1 eq. Ar2, 

5 eq Ar1. b10 eq. styrene derivative. cYield at 24 h. d61% cyclohex-

adiene unreacted. 

Control reactions again show that neither Q-1 nor C-1 separately 

give cycloadduct 2 (Table 1, entries 2 and 3). Adding the competi-

tive inhibitor anthraquinone Q-10 (Ka = 5 × 107 M−1) also com-

pletely curtails reactivity (Table 1, entry 4). This shows that for-

mation of the Q-1⊂C-1 host-guest complex is key. We have also 

investigated the possibility of hidden Brønsted acid catalysis by re-

acting the substrates with 10 mol% hydronium BArF. This reaction 

shows minimal consumption of substrates after 1 h and even after 

24 h shows no obvious formation of compound 2 (see Figure S10). 

In contrast, Q-1⊂C-1 gives quantitative yield of 2 in 1 h. The di-

versity of encapsulated p-quinones used to effect cycloaddition has 

also been investigated.[11] Tetrahalogenated quinones Q-2 and Q-3 

both gave the cycloadduct in close to quantitative yield, as did 

DDQ, Q-4, (Table 1, entries 6–8). Interestingly, the endo:exo ratio 

with Q-4 (3.6:1) was different from that obtained with Q-1, Q-2 

and Q-3 (4.7:1). A possible reason is that the higher reduction po-

tential of Q-4⊂C-1 promotes a longer lifetime of the radical cation 

product, thereby promoting more facile interconversion between 

exo and endo isomers via the uncyclized distonic radical cation in-

termediate. While dihalogenated quinones (Q-5, Q-6 and Q-7) still 

showed some latent activity (Table 1, entries 9–11), this was lost 

altogether with chloroquinone (Q-8) and the anthraquinone deriv-

atives, Q-9 and Q-10 (Table 1, entry 12). All quinones were cata-

lytically inactive on their own. 

Table 1. Quinone⸦C-1 catalyzed [4+2] cycloaddition of 

trans-anethole and cyclopentadiene. 

 

Entry Cage Quinone Yielda 

1 C-1 Q-1 99 

2 C-1    – 0 

3   – Q-1 0 

4b C-1 Q-1 0 

5 C-2 Q-1 0 

6 C-1 Q-2 96 

7 C-1 Q-3 99 

8 C-1 Q-4 94 

9 C-1 Q-5 5 (22) 

10 C-1 Q-6 5 (22) 

11 C-1 Q-7 4 (16) 

12 C-1 Q-8–10 0 

aCage / quinone 0.5 mM, trans-anethole 10 mM, 20 mM cyclo-

pentadiene; yield at 1 hour determined by 1H NMR spectroscopy 

(values in parentheses at 24 hours). bWith 20 mM Q-10.  



 

  

 

Figure 1. Quinone⸦C-1 ET was investigated by (a) measuring the formation of oxidized species (bromoferrocinium (BrFc+), dibromofer-

rocinium (Br2Fc+) and the dimethylanthracene radical cation (DMA•+)) using UV/Vis spectroscopy following addition of single electron 

donors (BrFc, Br2Fc and DMA) to quinone⸦C-1 complexes. The redox potentials for Q-8⸦C-1 and Q-6⸦C-1 were determined by (b) 

fitting these titrations to give ET equilibrium constants K and thereby ΔE with respect to the redox potentials of Br2Fc and BrFc. (c) A 

comparison of the quinone⸦C-1 redox potentials with respect to the free quinone, substrate and ferrocene reference compounds obtained by 

either quantitative analysis (orange and purple solid lines) or using qualitative observations based on catalyses and UV/Vis spectroscopy 

(green dashed line). The redox potentials of all non-cage compounds were measured by CV using a CH2Cl2 / NBu4BArF electrolyte solution.  

 

Perhaps surprisingly, the highly homologous cage C-2 does not 

elicit redox catalysis for either the [4+2] cycloaddition of trans-an-

ethole and cyclopentadiene (Table 1, entry 5) nor the [2+2] reaction 

of trans-anethole only. The poor [4+2] reactivity is partly explained 

because C-2 rapidly catalyzes the thermal DA reaction of Q-1 and 

cyclopentadiene. However, this does not explain the inactivity to-

wards the [2+2] reaction, and hence the lack of redox reactivity 

more generally.  This fundamental disparity likely stems from the 

different affinities of the two cages for anionic guests,[12] and by 

extension differing stabilization of the semiquinone radical anion 

Q-1•−. While we have been unable to measure absolute anion asso-

ciation constants for C-1 and C-2, a competitive binding experi-

ment with the triflate anion shows complete selectivity for C-1 (see 

Figure S9). Further ET experiments with C-2 show that redox mod-

ulation is not switched off altogether rather it is significantly re-

duced (see below).    

Expanding the number of cycloaddition reactions, cyclohexadi-

ene and isoprene also react with trans-anethole in the presence of 

5 mol% C-1/Q-1 (Scheme 2a), giving 3 and 4 in close to quantita-

tive yield. For the reaction of trans-anethole and isoprene to give 

4, we have explored the possibility of reducing the catalyst loading 

further; it can be dropped to 1 mol% C-1 (with 10 mol% Q-1) with 

only a slight drop in yield (see Table S1). This is a possible conse-

quence of chain propagation[10b] caused by effective charge separa-

tion between the radical cation intermediate and the reduced yet 

cationic host-guest complex. trans-Anethole can also be replaced 

by N-methylvinyl carbazole[9d] (Scheme 2a), giving [4+2] products 

5 and 6, also in excellent yields. As previously noted, [2+2] for-

mation of the head-to-head homodimer 1 using Q-1⊂C-1 gave a 

modest yield. The homo-dimeric product of N-methylvinyl carba-

zole, 7, can also be accessed in similar yields, yet interestingly, the 

cross [2+2] product of trans-anethole and N-methylvinyl carbazole 

gives product 8 in a much higher 77% yield (Scheme 2a). The het-

ero [2+2] cycloaddations of trans-anethole with electron neutral 

enes have also been carried out, giving cyclobutane adducts, 9–11.  

In addition to enes, Q-1⊂C-1 also promotes the reaction of the 

electron rich diene, 9,10-dimethylanthracene (DMA), which un-

dergoes [4+2] cycloaddition with tert-butyl benzoquinone (Scheme 

2c). This reaction is complementary to the other [4+2] reactions 

reported above as it expands the scope to electron deficient enones. 

It is important to note that we have previously shown that tert-butyl 

benzoquinone is not a guest for these Pd2L4 cages. Also, DMA is 

too bulky to ingress and participate in a thermal DA reaction within 

the cavity,[2h] suggesting that ET can take place without substrate 

encapsulation. We also note that this reaction occurs readily in the 

absence of light suggesting that the mechanism does not involve 

photoinduced ET to the host guest complex. The use of Q-4 in place 

of Q-1 enhances the oxidizable substrate scope further. This is ev-

idenced by reaction of cyclohexadiene with Q-4⊂C-1, which gen-

erates the [4+2] unsymmetrical dimer 12 (Scheme 2d).[13] In con-

trast, Q-1⊂C-1 does not show any reactivity with cyclohexadiene.    

Attempts to directly assess the redox potentials of the encapsu-

lated quinone using cyclic voltammetry (CV) have proved incon-
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clusive due to difficulties in detecting quinone/quinone•−⊂C-1. In-

stead we have measured several free quinones, substrate and refer-

ence compounds using 0.1 M NBu4BArF in CH2Cl2 as electrolyte. 

This best represents the catalytic conditions, which uses the BArF 

salt of the cage in CH2Cl2 (see Supporting Information, section 11). 

Q-1⊂C-1 can oxidise both the substrate DMA and reference com-

pound tris(p-bromophenyl)amine (the reduced form of the Led-

with-Weitz salt) as directly evidenced by the formation of 

known[8,14] oxidized products using UV/Vis spectroscopy (Figure 

1(a) and Figure S44).  A comparison of the redox potentials of 

DMA (E1/2 = 0.59 V vs Fc+/Fc) and free Q-1 (E1/2 = −0.47 V vs 

Fc+/Fc) indicates that C-1 must shift the quinone redox potential 

anodically in excess of 1 V (Figure 1(c), dashed green line). Calcu-

lations show that the added electron is centered on the bound qui-

none and is thus stabilized by multiple non-covalent interactions 

(Figure S57).[15] We also note that Q-1⸦C-2 is unable to oxidise 

either DMA or reference compound tris(p-bromophenyl)amine 

(Figure S44-45), in line with the lack of catalytic activity. However, 

ET is observed with ferrocene (Figure S46) showing the C-2 can 

shift the redox potential of Q-1, albeit much less.  

Further attempts to quantify the ET for the catalytic Q-1⊂C-1 

have been hampered by the limited stability of the DMA radical 

cation. Similarly, the in situ generated BArF equivalent of the Led-

with-Weitz salt showed similar instability, preventing quantitative 

analysis of Q-1⊂C-1. Instead, we have investigated the ET of less 

oxidizing host guest complexes Q-6⊂C-1 and Q-8⊂C-1 using 

more weakly reducing bromoferrocene (BrFc) and 1,1′-dibromo-

ferrocene (Br2Fc) reference compounds (Figures 1(a)). The result-

ant ferroconium BArF salts are stable in solution and their extinc-

tion coefficients are known.[8] Fitting this titration data (Figure 1(b), 

see Supporting Information for details) yielded ET equilibrium val-

ues (K) from which the redox potentials of the quinone⊂C-1 host 

guest complexes have be calculated using the absolute values for 

BrFc (E1/2 = 0.19 V vs Fc+/Fc) and Br2Fc (E1/2 = 0.34 V vs Fc+/Fc). 

Comparing the calculated redox potentials of Q-6⊂C-1 (E1/2 = 0.27 

V vs Fc+/Fc) and Q-8⊂C-1 (E1/2 = 0.12 V vs Fc+/Fc) to the unbound 

Q-6 (E1/2 = −0.67 V vs Fc+/Fc) and unbound Q-8 (E1/2 = −0.83 V 

vs Fc+/Fc) respectively reveal an almost identical shift (ΔE1/2 = 0.94 

and 0.95 V) for two separate titrations with different host-guest and 

reference compounds (Figure 1(c), purple and orange lines). These 

encapsulation-induced anodic shifts are also consistent with the ≈ 

1.06 V that separates DMA and Q-1, suggesting that the cage shifts 

the quinone redox potential by a roughly uniform amount. These 

redox shifting properties of C-1 compare favourably with the ~0.6 

V anodic shift of o-quinone reduction potentials observed by Noc-

era and Jacobsen using small molecule, cationic H-bond donors.[8]   

In conclusion, we have demonstrated a novel mode of cage ca-

talysis that involves dramatically enhancing the oxidation power of 

commercially available quinones. Furthermore, encapsulation pre-

vents further oxidation of the semiquinone, facilitating non-con-

fined reactivity involving radical cation species. These results pave 

the way to other forms of non-confined catalysis wherein encapsu-

lation triggers the release of reactive species from benign and easy 

to handle starting reagents.   
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